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ABSTRACT

The criterion of zero-error probability provides a limitation on error probability functions being used for adoptive systems when the
error samples are shiffed by the influence of DC-bias noise. In this paper, we employ a bias term in the error distribution and propose
a new criterion of the biased zero-error probability with error being zero. Also, by maximizing the proposed criterion on expanded filter
structures, a supervised adaptive algorithm has been derived. From the simulation results of supervised equalization, the algorithm based
on the proposed criterion yielded zero-centered and highly concenfrated error samples without disturbance in the environments of
strong impulsive and DC-bias noise.

= keyword : impulsive, DC-bias, zero-error probability, equalization

1. INTRODUCTION entropy concept has been studied [6]. For more enhanced

performance, a zero-error probability function has been

Communication channels are distorted by the incomplete introduced as a performance criterion [7]. Maximization of

channel conditions such as multipath fading and additive
noise and induce intersymbol interference (ISI) that causes
the communication systems to be not acceptable for reliable
communications [1]. Particularly the impulsive noise that
prevents equalizer algorithms from ISI cancellation
commonly occurs in underwater communications [2], indoor
communications [3], optical fiber communications and
in-vehicle signal transmission [4] and digital TV systems [5].

Recently, to deal with ISI and impulsive noise problems
simultaneously, a decision feedback approach based on error
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the zero-error probability moves the error samples to
concentrate on zero and has proven to yield superior
performance in multipath fading and impulsive noise
environments.

However, probability density functions (PDFs) of error
samples in the work do not have any variables to control its
mean value on the error-axis so that the criterion based on
zero-error PDF has shown in this research to have limitations
on ISI cancellation performance under non-Gaussian noise
composed of impulsive and DC-bias noise.

To cope with the problems of non-Gasussian noise and ISI,
in this paper, we propose a new criterion of the biased
zero-error probability by employing a bias term. Also a
supervised equalizer algorithm is derived by maximizing the
proposed criterion based on the Gaussian kernel and proven
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to be superior in the environments of severe ISI and strong
non-Gaussian noise.

2. BIASED ERROR PDF AND
PROPOSED COST FUNCTION

The error sample of a given system is defined as
e, =d,—y, where d; is the desired symbol and J; is the
output at the symbol time ;. Error distribution fz(¢) reveals
how concentrated error samples are and what is their mean
value. Particularly the zero-error probability /% (0) shows
how many error samples are gathered around zero on the
error-axis and can be utilized as a performance criterion.

The zero-error probability criterion utilizes kernel density
estimation method that is to estimate the probability density
function of error as a random variable in a non-parametric
way based on a finite error sample [8]. Given a set of M
eror symbols £y ={e,€sm€) ), the kemel density
estimation method based on a zero-mean Gaussian kernel
with standard deviation o places a Gaussian kernel
G,(e—¢;) on each of the data points €. Then the M
Gaussian kernels are summed as in (1) to make the kernel
density estimate that can approximate the true density for
continuous random variables.

. 1 &
fE(e)Eﬁ;Gg(e—e,-) @

In the construction of density functions at the receiver,
smaller kernel sizes, on one hand, produce more accurate
solutions but instable, on the other hand, wider ones bring
more inaccurate solutions [9].

The zero-error probability /%(0) becomes
1 M
AUESvINICH )

Maximization of /z(0) moves the error samples ¢ close to

zero by removing the negative effects from outliers caused

by intersymbol interference (ISI) and impulsive noise [7].
On the other hand, the error distribution f:(€) does not

contain any variable to move its mean value on the error-axis
so that the criterion /z(0) has a limit when the error
samples are shifted by some influences such as DC-bias
noise. Based on this analysis, we employ the biased error

(BE) PDF f3:(€) with bias term 7 as
S @=fie+ D=2 G e+ D) @)

In this paper, instead of dealing with /z(0), we propose

a new criterion of the biased zero-error PDF fz:(¢=0) as
1 M
fBE(O):fE(T):HZGJ(eii‘[) (4)
i=1

For simplicity, we let
e[,hiased = e[ -7 (5)

Then we have
1 M
fE (r)= ﬁ ; Go' (ei,bmmi) ©6)

The maximization of the proposed criterion ./z(7) forces
the error PDF to be shifted by the amount of the bias 7 as
well as most of the error values become zero. So according
to the amount of influence of DC-bias noise the bias 7 is
to be estimated in adaptive algorithms based on the proposed
cost function.

3. ADAPTIVE ALGORITHMS BASED
ON THE BIASED ZERO-ERROR
PROBABILITY

For a tapped delay line (TDL) structure with system
weights W =[Wo: Wy Wy, 1 and system input

T
X =[x X o X ] , output Vi is defined as
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y=W'X, )
On the other hand, we can extend the system by adding

another weight element W» to W and a constant b to X;

as
W =D, Wi wy 11 @®)
X

X, X, X b]" ©)

iext =[ iAiet, e AN

Then the extended system output can be expressed as

Viet = WerXiou (10)
Then we can define the extended system error e as
Coa = = Vien (11

It is desirable that we verify the relationships between the
system error ¢ and the extended system error %er. From

(7) and (10), we have
View = Vi ¥ Wy b (12)
By inserting (12) into (11), we obtain

e d,—y,—wy-b

iext — Y

=e—wy-b 13)

Comparing (12) and (5) and replacing it with €iex, that

e

iext

is, = €isiased | we can observe that the bias 7 can be
controllable as 7=Ww, ‘b This indicates that the proposed
criterion  /£(7) can be applied to the extended system.

Then the criterion for the extended system, Jeea()

For the maximization of the criterion /7.« (?) , we have

the gradient of Jfz.e«(?) at the sample time & as follows.

- . ce.
LealD 1 3 e Gl o
awm oM . Sia N ’ awex/ 15)
. 0 i :
Using W aw the gradient becomes
5f ;E,ex/(T) _ 1 ﬁ e -G (eV ) ayz,t’xl
6Wm o_z M i iext o \Viext awﬂ/
1 k W, .
= oo G e ) . iext
71, 2 oo Go ) G
1 £ G
= e. . e. X
O_zM iz/;/lﬂz,exr o( :,exf) iext (16)

By the steepest ascent method with (15), the update
algorithm for the extended weight vector can be summarized

as

W,

k+1,ext

k
= WILEXI z Ciext’ Ga (expexz) : XLexz

Y7
+ [ S—
oM i=k-M+1 (17)

For convenience’s sake, this proposed algorithm (17) for
supervised systems with (8) and (9) will be referred to in this
paper as MBZEP algorithm.

4. SIMULATION  RESULTS IN
CHANNELS WITH
NON-GAUSSIAN NOISE

In this section the performance of the proposed algorithm
in (17) is compared with the existing MZEP algorithm in [7]
for fading channels with non-Gaussian noise composed of
impulsive and time-varying DC-bias noise. The transmitted
symbol points are @ ={=3,~LL3} and the first channel
model H, is the same as in [7] for fair comparison. The
second channel #, is from underwater channel data actually
acquired from a shallow-water communication experiments
[10] as described below in z-transform.

becomes
1 M
fm(r):ﬁgcg(e,,ﬂ» (14)
sh= olE{Yl MESS| (14313)
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(Fig. 1) Impulsive noise with time-varying DC

bias.
H,(2)=0.304+0.903z"" +0.304z " (18)
H,(z)=0.798z" +0.5432™° +0.259z° 19

The impulsive noise model in this section is the same as the
one used in [7]. The distribution of the impulsive noise ?im
is S () =01- 5)/0-1

~exp[— nImz/zo-zz] where &=0.03, o =50 js impulse

7 -exp[-ny, /20-1 ] +5/o—2

noise variance, O { =0.001 s the variance of background
white Gaussian noise, and 03 =0} + 07 .

Time-varying DC-bias noise  ”pcx for the non-
Gaussian noise in this simulation is added to the
impulsive noise as " =Mmi tpcy. The time-varying
DC-bias is generated as Mpcx =S27ok)  with
fo=1/20000  and added at k=6000 after
convergence. The parameter Jo is selected for being
observable as shown in Fig. 1.

The equalizer length N =11 and the constant for Xien
isset b=2. The number of data-block size M =4. The
step-size is 0.004 for #/, and 0.01 for H,. And the kemnel
size o is 0.7 for H; and 1.0 for /. All these parameters
are applied to both algorithms under comparison.

In Fig. 1, The convergence performance of MSE for H,

MZEP

MSE (dB)

2] ||l |\| fql i (H' M IH

MBZEP

4 1+
0 2000 4000 6000 8000 10000 12000

Iterations

(Fig. 2) MSE performance for H1 with impulsive
and time-varying DC bias noise.

is shown. Both algorithms converge at about 2000 samples
to around -23 dB of steady state MSE even under strong
impulsive noise. Right after the DC-bias noise is added to
the channel output, however, MZEP algorithm starts to
diverge yielding gradually increasing MSE as the added
DC-bias noise increases. Apparently the proposed MBZEP
algorithm shows no perturbations at all. As the DC-bias
reaches 1 volt at around 12000 iterations, the MSE
performance difference leads to about 13 dB. In the

shallow-water communication channel #7,, we observe
similar results as shown in Fig. 2. After reaching the steady
state MSE around -22 dB at the same rapid speed even in
the channel condition of severe distortion and impulsive
noise, MZEP shows growing MSE in proportion to the
amplitude of DC-bias noise from the iteration number 6000.
But the proposed MBZEP algorithm keeps the same steady
state as in ;.

The superior immunity against non-Gaussian noise can be
proved from the perspective of error distribution as shown in
Fig. 4 for H, and in Fig. 5 for #,. In Fig. 4, The proposed
MBZEP algorithm produces zero-centered and highly
concentrated error samples, but the mean of error samples of
MZEP algorithm is spread and shifted to the left centered
around -0.4. This means most etror samples are not zero but
have negative values, that is, most output of MZEP
algorithm are positively biased from their corresponding
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(Fig. 3) MSE performance for H2 with impulsive
and time-varying DC bias noise.

symbol points owing to the positive DC-bias noise at about
the iteration number 12000 as shown in Fig. 1. The highly
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(Fig. 4) Error distribution for H1 with impulsive
noise and slowly varying DC bias.

dispersed distribution of MZEP algorithm indicates that
MZEP algorithm stricken with DC-bias noise loses the merits
of ISI-cancellation performance andfor immunity to
impulsive noise. In the severer channel H,, we observe the
disadvantage of MZEP algorithm more apparently. The error
distribution of MZEP is more dispersed and shifted to the
negative region of error-axis larger than in the case of H;.
This implies that in severer channels, MZEP algorithm
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(Fig. b) Error distribution for H2 with impulsive
noise and slowly varying DC bias.

suffers more performance degradation due to DC-bias noise.
On the other hand, the proposed MBZEP algorithm in both
channel conditions yields zero-centered and highly
concentrated error samples without disturbance in the
environments of non-Gaussian noise such as impulsive and

DC-bias noise.

5. CONCLUSION

Since the error distribution does not have any variable to
move its mean value on the error-axis, the MZEP criterion
based on zero-error probability has a limit on the cancellation
of ISI when the error samples are influenced by DC-bias
noise. To cope with the problems of ISI and non-Gasussian
noise, in this paper, we have proposed a new criterion of the
biased zero-error probability by employing a bias term and
letting error be zero.

The proposed algorithm derived from maximizing the
biased zero-error probability based on the Gaussian kernel
has the forces of shifting error samples and concentrating
them on zero on the error-axis in the environments of severe
ISI and strong non-Gaussian noise.

From the simulation results of supervised
equalization, we conclude that MZEP algorithm under
DC-bias noise loses the merits of ISI-cancellation

performance or immunity to impulsive noise, but the

el

b= QIEIH HESE| (14213)
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proposed algorithm yields zero-centered and highly
concentrated error samples without disturbance in the
environments of non-Gaussian noise such as

impulsive and DC-bias noise.
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