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비-가우시안 잡음하의 응 시스템을 한 바이어스된 -오차확률 

Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian 
Noise

김 남 용*

Namyong Kim

요    약

-오차확률 성능 기 은 오차 샘 들이 직류 바이어스 잡음의 향을 받을 때 응 시스템에 사용되기에는 제약이 따른다. 이 

논문에서는 바이어스 변수를 오차 분포에 도입하고 바이어스된 오차확률에서 오차를 0 으로 하여 새로운 성능 기 인 바이어스된 

-오차확률을 제안하 다. 한, 확장 필터 구조를 기반으로 제안된 성능 기 을 최 화 함으로써 응 알고리듬을 도출하 다. 통
신 채  등화에 한 시뮬 이션 결과로부터 제안된 성능기 에 기반한 이 알고리듬이 강한 충격성 잡음과 직류-바이어스 잡음의 

환경에서 동요 없이 오차 샘 들을 0 으로 집 시키는 성능을 보 다. 

☞ 주제어 : 충격성, 직류-바이어스, -오차확률, 등화

ABSTRACT

The criterion of zero-error probability provides a limitation on error probability functions being used for adaptive systems when the 

error samples are shifted by the influence of DC-bias noise. In this paper, we employ a bias term in the error distribution and propose 

a new criterion of the biased zero-error probability with error being zero. Also, by maximizing the proposed criterion on expanded filter 

structures, a supervised adaptive algorithm has been derived. From the simulation results of supervised equalization, the algorithm based 

on the proposed criterion yielded zero-centered and highly concentrated error samples without disturbance in the environments of 

strong impulsive and DC-bias noise.

☞ keyword : impulsive, DC-bias, zero-error probability, equalization

1. INTRODUCTION

Communication channels are distorted by the incomplete 

channel conditions such as multipath fading and additive 

noise and induce intersymbol interference (ISI) that causes 

the communication systems to be not acceptable for reliable 

communications [1]. Particularly the impulsive noise that 

prevents equalizer algorithms from ISI cancellation 

commonly occurs in underwater communications [2], indoor 

communications [3], optical fiber communications and 

in-vehicle signal transmission [4] and digital TV systems [5].  

Recently, to deal with ISI and impulsive noise problems 

simultaneously, a decision feedback approach based on error 
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entropy concept has been studied [6]. For more enhanced 

performance, a zero-error probability function has been 

introduced as a performance criterion [7]. Maximization of 

the zero-error probability moves the error samples to 

concentrate on zero and has proven to yield superior 

performance in multipath fading and impulsive noise 

environments. 

However, probability density functions (PDFs) of error 

samples in the work do not have any variables to control its 

mean value on the error-axis so that the criterion based on 

zero-error PDF has shown in this research to have limitations 

on ISI cancellation performance under non-Gaussian noise 

composed of impulsive and DC-bias noise. 

To cope with the problems of non-Gasussian noise and ISI, 

in this paper, we propose a new criterion of the biased 

zero-error probability by employing a bias term. Also a 

supervised equalizer algorithm is derived by maximizing the 

proposed criterion based on the Gaussian kernel and proven 
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to be superior in the environments of severe ISI and strong 

non-Gaussian noise.

  

2. BIASED ERROR PDF AND 

PROPOSED COST FUNCTION

 The error sample of a given system is defined as 

iii yde   where id  is the desired symbol and iy  is the 

output at the symbol time i . Error distribution )(efE  reveals 

how concentrated error samples are and what is their mean 

value. Particularly the zero-error probability  )0(Ef  shows 

how many error samples are gathered around zero on the 

error-axis and can be utilized as a performance criterion.  

The zero-error probability criterion utilizes kernel density 

estimation method that is to estimate the probability density 

function of error as a random variable in a non-parametric 

way based on a finite error sample [8]. Given a set of M  

error symbols  MM eeeE ,...,, 21 , the kernel density 

estimation method based on a zero-mean Gaussian kernel 

with standard deviation   places a Gaussian kernel 

)( ieeG   on each of the data points ie . Then the M  

Gaussian kernels are summed as in (1) to make the kernel 

density estimate that can approximate the true density for 

continuous random variables. 





M
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M
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1
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In the construction of density functions at the receiver, 

smaller kernel sizes, on one hand, produce more accurate 

solutions but instable, on the other hand, wider ones bring 

more inaccurate solutions [9].       

The zero-error probability )0(Ef  becomes
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Maximization of )0(Ef  moves the error samples ie  close to 

zero by removing the negative effects from outliers caused 

by intersymbol interference (ISI) and impulsive noise [7].

  On the other hand, the error distribution )(efE  does not 

contain any variable to move its mean value on the error-axis 

so that the criterion )0(Ef  has a limit when the error 

samples are shifted by some influences such as DC-bias 

noise. Based on this analysis, we employ the biased error 

(BE) PDF )(efBE  with bias term   as 
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In this paper, instead of dealing with )0(Ef , we propose 

a new criterion of the biased zero-error PDF )0( efBE  as
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For simplicity, we let 

 ibiasedi ee ,                   (5)

Then we have 
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The maximization of the proposed criterion )(Ef  forces 

the error PDF to be shifted by the amount of the bias   as 

well as most of the error values become zero. So according 

to the amount of influence of DC-bias noise the bias   is 

to be estimated in adaptive algorithms based on the proposed 

cost function. 

 

3. ADAPTIVE ALGORITHMS BASED 

ON THE BIASED ZERO-ERROR 

PROBABILITY 

 For a tapped delay line (TDL) structure with system 

weights 
T

Nwww ],...,,[ 110 W  and system input 

T
Niiii xxx ]...,[ 1,1, X , output iy  is defined as 
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i
T

iy XW                     (7) 

On the other hand, we can extend the system by adding 

another weight element Nw  to W  and a constant b  to iX  

as

T
Next wwww ],...,,,[ 210W            (8)

T
Niiiexti bxxx ],...,[ 1,1,, X           (9)

 

Then the extended system output can be expressed as 

 

exti
T
extextiy ,, XW                  (10)

 

Then we can define the extended system error  extie ,  as  

extiiexti yde ,,                   (11)

It is desirable that we verify the relationships between the 

system error ie  and the extended system error extie , . From 

(7) and (10), we have 

bwyy Niexti ,                 (12)

By inserting (12) into (11), we obtain 

bwyde Niiexti ,

    bwe Ni                   (13)

Comparing (12) and (5) and replacing biasedie ,  with extie , , that 

is,  biasediexti ee ,,  , we can observe that the bias   can be 

controllable as bwL  . This indicates that the proposed 

criterion  )(Ef  can be applied to the extended system. 

Then the criterion for the extended system, )(, extEf  

becomes
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For the maximization of the criterion )(, extEf , we have 

the gradient of )(, extEf  at the sample time k  as follows.
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Using 
ext

exti

ext

exti ye
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 ,,

, the gradient becomes 
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By the steepest ascent method with (15), the update 

algorithm for the extended weight vector can be summarized 

as 
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  (17)    

                                         

For convenience’s sake, this proposed algorithm (17) for 

supervised systems with (8) and (9) will be referred to in this 

paper as MBZEP algorithm.

  

4. SIMULATION RESULTS IN 

CHANNELS WITH 

NON-GAUSSIAN NOISE

 In this section the performance of the proposed algorithm 

in (17) is compared with the existing MZEP algorithm in [7] 

for fading channels with non-Gaussian noise composed of 

impulsive and time-varying DC-bias noise. The transmitted 

symbol points are }3,1,1,3{ id  and the first channel 

model 1H  is the same as in [7] for fair comparison. The 

second channel 2H  is from underwater channel data actually 

acquired from a shallow-water communication experiments 

[10] as described below in z-transform.  
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(Fig. 1) Impulsive noise with time-varying DC 

bias. 
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(Fig. 2) MSE performance for H1 with impulsive 

and time-varying DC bias noise. 

21
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864
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The impulsive noise model in this section is the same as the 

one used in [7]. The distribution of the impulsive noise Imn  

is ]2exp[2)1()( 2
1

2
Im1Im  nnfIM  22  

]2exp[ 2
2

2
Im n  where 03.0 , 502 IN  is impulse 

noise variance,  001.02
1   is the variance of background 

white Gaussian noise, and 
22

1
2
2 IN  .

 Time-varying DC-bias noise  kDCn ,  for the non- 

Gaussian noise in this simulation is added to the 

impulsive noise as kDCkk nnn ,Im,  . The time-varying 

DC-bias is generated as )2sin( 0, kfn kDC   with 

20000/10 f  and added at 6000k  after 

convergence. The parameter 0f  is selected for being 

observable as shown in Fig. 1.  

The equalizer length 11N  and the constant for exti,X  

isset 2b . The number of data-block size 4M . The 

step-size is 0.004 for 1H  and 0.01 for 2H . And the kernel 

size   is 0.7 for 1H  and 1.0 for 2H . All these parameters 

are applied to both algorithms under comparison. 

In Fig. 1, The convergence performance of MSE for 1H  

is shown. Both algorithms converge at about 2000 samples 

to around -23 dB of steady state MSE even under strong 

impulsive noise. Right after the DC-bias noise is added to 

the channel output, however, MZEP algorithm starts to 

diverge yielding gradually increasing MSE as the added 

DC-bias noise increases. Apparently the proposed MBZEP 

algorithm shows no perturbations at all. As the DC-bias 

reaches 1 volt at around 12000 iterations, the MSE 

performance difference leads to about 13 dB. In the 

shallow-water communication channel 2H , we observe 

similar results as shown in Fig. 2.  After reaching the steady 

state MSE around -22 dB at the same rapid speed even in 

the channel condition of severe distortion and impulsive 

noise, MZEP shows growing MSE in proportion to the 

amplitude of DC-bias noise from the iteration number 6000. 

But the proposed MBZEP algorithm keeps the same steady 

state as in 1H .    

The superior immunity against non-Gaussian noise can be 

proved from the perspective of error distribution as shown in 

Fig. 4 for 1H  and in Fig. 5 for 2H . In Fig. 4, The proposed 

MBZEP algorithm produces zero-centered and highly 

concentrated error samples, but the mean of error samples of 

MZEP algorithm is spread and shifted to the left centered 

around -0.4. This means most error samples are not zero but 

have negative values, that is, most output of MZEP 

algorithm are positively biased from their corresponding 
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(Fig. 5) Error distribution for H2 with impulsive 

noise and slowly varying DC bias. 
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(Fig. 4) Error distribution for H1 with impulsive 

noise and slowly varying DC bias. 

symbol points owing to the positive DC-bias noise at about 

the iteration number 12000 as shown in Fig. 1. The highly 

dispersed distribution of MZEP algorithm indicates that 

MZEP algorithm stricken with DC-bias noise loses the merits 

of ISI-cancellation performance and/or immunity to 

impulsive noise. In the severer channel 2H , we observe the 

disadvantage of MZEP algorithm more apparently. The error 

distribution of MZEP is more dispersed and shifted to the 

negative region of error-axis larger than in the case of 1H . 

This implies that in severer channels, MZEP algorithm 

suffers more performance degradation due to DC-bias noise. 

On the other hand, the proposed MBZEP algorithm in both 

channel conditions yields zero-centered and highly 

concentrated error samples without disturbance in the 

environments of non-Gaussian noise such as impulsive and 

DC-bias noise.

 

5. CONCLUSION

Since the error distribution does not have any variable to 

move its mean value on the error-axis, the MZEP criterion 

based on zero-error probability has a limit on the cancellation 

of ISI when the error samples are influenced by DC-bias 

noise. To cope with the problems of ISI and non-Gasussian 

noise, in this paper, we have proposed a new criterion of the 

biased zero-error probability by employing a bias term and 

letting error be zero. 

The proposed algorithm derived from maximizing the 

biased zero-error probability based on the Gaussian kernel 

has the forces of shifting error samples and concentrating 

them on zero on the error-axis in the environments of severe 

ISI and strong non-Gaussian noise.

From the simulation results of supervised 

equalization, we conclude that MZEP algorithm under 

DC-bias noise loses the merits of ISI-cancellation 

performance or immunity to impulsive noise, but the 
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proposed algorithm yields zero-centered and highly 

concentrated error samples without disturbance in the 

environments of non-Gaussian noise such as 

impulsive and DC-bias noise.
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