MISO 전송 모드에서 Iterative Demapping and Decoding을 사용하는 DVB-T2 수신기의 성능분석

Performance Evaluation of a DVB-T2 Receiver with Iterative Demapping and Decoding in MISO Transmission Mode

백종호* 서정욱** 강민구*** 전은성**** 김동구**** Paik, Jong-Ho Seo, Jeong-Wook Jeon, Eun-Sung Kim, Dong-Ku Kang, Ming-Goo

요 약

본 논문은 차세대 유럽형 디지털 지상과 시스템으로 알려진 DVB-T2 시스템의 MISO(Multi Input Single Output)전송 모드에서 의 BER (Bits Error Rate) 성능을 시뮬레이션을 통해 분석하였다. EISI EN 302 755 표준에 따라 제작된 Full 시뮬레이터를 통해 실험을 수행하였으며, 수신기는 demapper가 LDPC 채널 디코더로부터 전달되는 a priori 정보를 이용하여 LLR(Log Likelihood Ratio) 값을 계산하는 IDD(Iterative Demapping and Decoder) 기술을 사용하였다. 시뮬레이션을 통해 16QAM, R=1/2(short 프레 임)에서 IDD를 적용할 경우, BER=10⁴에서 2dB의 이득이 있음을 확인할 수 있었다. 또한 안테나 사이의 주파수 오프셋 영향으 로 성능 열화가 발생함을 확인할 수 있었다.

ABSTRACT

In this paper, the BER(Bit Error Rate) performance of a DVB-T2(Second Generation Digital Terrestrial Television Broadcasting System) in MISO(Multiple Input Single Output) transmission mode is evaluated by the computer simulation. In the DVB-T2 receiver, an IDD(Iterative Demapping and Decoder) technique is employed that exchanges extrinsic information between the demapper and the LDPC decoder. Simulation results show that the IDD-based DVB-T2 receiver in MISO transmission mode provides 2dB gain at BER of 10^{-4} but suffer from the frequency offsets between transmit antennas.

☞ keyword : DVB-T2, MISO(Multi Input Single Output), LDPC 채널 디코더. LLR(Log Likelihood Ratio), IDD(Iterative Demapping and Decoder)

1. 서 론

차세대 유럽형 디지털 지상파 방송 표준으로 알려진 DVB-T2(Second Generation Terrestrial

* 종신회원 : 전자부품연구원 모바일단말연구센터
센터장 paikjh@keti.re.kr
** 정 회 원 : 전자부품연구원 모바일단말연구센터
선임연구원 jwseo@keti.re.kr
*** 종신회원 : 한신대학교 정보통신학과 교수
kangmg@hs.ac.kr(교신저자)
**** 정 회 원 : 연세대학교 대학원 전기전자공학과 박사과정
youngmil2@yonsei.ac.kr
***** 정 회 원 : 연세대학교 전기전자공학과 교수
dkkim@yonsei.ac.kr
[2011/01/04 투고 - 2011/01/113 십사 - 2011/04/21 십사완료]

Television Broadcasting System)시스템은 ASO (Analogue Switch Off) 이후, HD(High Definition) 급 이상의 고품격 방송 서비스 제공을 위해서 DVB 프로젝트에 의해 개발된 최신 유럽형 지상 파 방송 표준이다. 높은 오류 정정 능력과 다양 한 오류 부호화율을 제공하기 위해서 BCH(Bose-Chaudhuri-Hocquenghem)-LDPC(Low Density Parity Check) 채널 코딩과 비트, 셀, 시간, 주파수의 인 터리빙을 사용하며, 256QAM까지 변조가능하다. 또한 성상회전(Rotated Constellation), 분산 MISO (Multiple Input Single Output) 다이버시티와 같은 최신의 기술을 채택하였으며, 파일럿의 오버헤드 를 줄이기 위해서 FFT(Fast Fourier Transform) 크 기와 보호구간의 길이 따라서 다양한 파일럿 패

(그림 1) DVB-T2 송신기 구조

턴을 사용하여 기존의 DVB-T에 비해 30% 이상 의 대비 전송 효율을 향상 시켰다.

DVB-T2 시스템은 (그림 1)과 같이 크게 채널 코딩과 인터리빙 및 변복조 기능을 수행하는 BICM(Bit Interleaved Coded Modulation) 모듈과 OFDM(Orthogonal Frequency Division Multiplexing) 모듈로 구성되어 있다[1]. BICM 모듈은 BCH-LDPC 채널 인코더와 비트, 셀, 시간, 주파수 인 터리버로 구성되어 있으며, 하나의 방송 채널에 서 다양한 오류 부호화율, 변조 지수, 비트, 셀, 시 간, 주파수 인터리버를 사용하는 PLP(Physical Layer Pipe) 개념을 도입하였다.

본 논문의 2장에서 DVB-T2 대략적인 시스템 을 구조를 기술하고, 3장에서 IDD(Iterative Demapping and Decoder) 기반 수신기를 기술한다. 4장에서 성능을 비교하고 5장에서 결론을 맺는다.

2. DVB-T2 시스템의 특징

2.1 BCH-LDPC 오류 정정

DVB-T가 길쌈코드(convolution encoder)과 Reed-

Solomon 코드를 사용한 반면, DVB-T2는 DVB-S2 와 마찬가지로 BCH와 LDPC 코드 기술을 사용한 다. FEC(Forward Error Correction)블록의 길이에 따라서 64,800 비트의 normal 프레임과 16,400 비 트의 short 프레임으로 구분된다. 1/4(short 프레임 만 해당), 1/2, 3/5, 2/3, 3/4, 4/5, 5/6의 7가지의 부 호화율을 정의하며, 1/4 부호화율은 시스템 정보 를 전송하는 L1 시그널링에만 적용된다.

2.2 인터리버

LDPC 코드는 랜덤하게 분포하는 비트에러에 대해서 우수한 성능을 가지고 있기 때문에 무작 위 패턴의 에러를 발생시키도록 인터리버를 사 용한다. 비트, 셀, 시간, 주파수의 4가지 인터리버 를 사용한다. 비트, 시간 인터리버는 블록 인터리 버 계열이며, 셀, 주파수 인터리버는 bermutation 함수를 통해 인터리빙을 수행된다. 비트 및 셀 인터리버가 한 FEC 블록 내에서 에러를 랜덤화 하기 위해 사용되는 반면, 시간 및 주파수는 다 수개의 FEC 블록들로 구성된 인터리빙 프레임 내에서 에러를 랜덤화하기 위해 수행된다. 주파 수 인터리버는 OFDM 한 심볼 내에서 인접한 데 이터 셀들을 랜덤화하기 위해서 사용한다.

2.3 성상회전

레일리 페이딩 채널에서 deep fading에 신호가 빠질 경우, 신호 자체가 소실될 수 있다. 성상회 전을 적용할 경우, I-채널 신호와 Q-채널 신호가 서로 상관관계를 가지게 되므로 I/Q 채널 중 한 채널의 신호가 소실될 경우, 소실되지 않은 다른 채널의 신호를 통해 어느 정도 복원이 가능하다. Q-delay 기술은 성상회전 기술과 함께 사용되며, Q-채널의 신호를 I-채널 신호에 비해서 한 심볼 지연시켜 보내는 기술로서 I/Q 채널의 심볼이 동 시에 deep 페이딩으로 소실이 되는 것을 방지한 다. 회전각은 변조지수에 따라서 QPSK는 290, 16-QAM, 64-QAM 그리고 256-QAM 는 각각 16.80, 8.60, atan(1/16)0.만큼 회전시킨다.

2.4 L1 시그널링과 프레임 빌더

L1 시그널링은 P1 심볼과 L1-pre 신호와 L1-post 신호로 구성된다. P1 심볼은 프레임의 시 작 신호로서 프레임의 대략적 시간 동기 및 소수 배 및 정수배 주파수 동기를 추정하는데 적합하 도록 설계가 되어 있으며, 7비트의 기본적인 시 스템 정보를 전송한다. L1-pre 신호는 200비트의 고정된 길이의 시스템 정보를 전송하며, L1-post 신호는 시스템 정보에 따라서 전송되는 정보 비 트 길이가 가변적이다. L1-pre 신호는 무선 채널 의 에러에 강인한 전송을 위하여 BPSK 변조와 1/4 부화화율(short 프레임)을 적용하고, L1-post 신호는 BPSK, QPSK, 16QAM, 64QAM 변조를 적 용하며, 1/2 부호화율(short 프레임)을 사용한다. 최대 255개의 T2 프레임이 하나의 슈퍼 프레임을 구성하며, T2 프레임은 P1 심볼, L1 시그널링 (L1-pre, L1-post)로 구성된다. L1-post 신호는 다 시 Configurable 파트와 Dynamic 파트 그리고 Extension, CRC32, 1비트의 L1-padding으로 나누 어진다. L1-pre 신호와 L1-post Configurable 파트 신호는 슈퍼 프레임동안 변하지 않는 시스템 정 보를 전송하고 L1-post Dynamic 파트는 T2 프레 임마다 바뀔 수 있는 시스템 정보를 전송한다. P1 심볼은 OFDM 변조 시 생성되어 T2 프레임 가장 앞 부분에 삽입이 된다. L1 시그널링과 함 께 PLP로 생성되는 데이터는 프레임 빌더에서 T2 프레임으로 매핑된다.

2.5 FFT 크기와 보호구간 길이

정의되는 FFT 크기는 1K, 2K, 4K, 8K, 16K, 32K의 총 6개의 FFT 크기를 가지며, 보호구간의 길이는 1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4 를 사용한다. 다양한 길이의 보호구간을 정의하 고 있어서 오버헤드를 기존의 DVB-T에 비해서 줄일 수 있다. 32K는 부반송파 사이의 거리가 짧 기 때문에 ICI (Inter-Carrier Interference) 영향이 크므로 이동수신에서는 사용하지 않는다.

2.6 파일럿 패턴

P2 파일럿, 분산 파일럿(scatter pilot), 연속 파 일럿(continual pilot), Edge 파일럿, Frame closing 파일럿을 사용하며, 분산 파일럿은 PP1에서 PP8 까지 FFT 크기와 보호구간 길이에 따라서 8개의 패턴을 가진다.

2.7 분산 다이버시티 MISO 전송 기법

DVB-T2의 대표적인 기술인 분산 다이버시티 를 위한 MISO인 기법은 (그림 2)와 같이 서로 다 른 안테나에서 Alamouti 코딩을 적용하여 신호를 전송한다. 즉, 송신 안테나 TX1은 *S*₀,*S*₁을 전송

(그림 3) DVB-T2 수신기 구조

하고 TX2는 -S₁^{*}, S₀^{*}를 전송한다. 단일주파수 네 트워크(single frequency network)에서 이를 통해 셀 가장 자리에서 수신 성능을 높이며 30% 정도 의 커버리지 증가를 얻을 수 있다. MISO 전송 시 두 안테나 사이의 시간 및 주파수 오프셋이 발생 하는 문제가 있다.

3. IDD 기반 수신기 설계

3.1 MISO 디코딩

(그림 3)은 DVB-T2 수신기의 일반적인 구조를 나타낸다. 본 절에서는 IDD 기반 수신기에서 MISO 디코딩 기법에 대해 초점을 맞추어 설명한다. TX1은 *a*₁,*a*₂을 전송하고, TX2는 −*a*^{*}₂, *a*^{*}₁를 전송할 때, 수신 데이터 셀은 다음과 같이 표현된다.

$$r_1 = H_1 a_1 - H_2 a_2^* + n_1 \tag{1}$$

$$r_2 = H_1 a_2 - H_2 a_1^* + n_2 \tag{2}$$

여기서 H_1 와 H_2 는 각각 TX1과 TX2의 채널 전달 함수이다. 위의 수식은 다음과 같이 동등한 수식 으로 나타낼 수 있다.

$$r = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = Ha + n \tag{3}$$

여기서
$$H = \begin{pmatrix} H_1 - H_2 \\ H_2^* & H_1^* \end{pmatrix}$$
 이며, $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, $n = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$ 이다.

IDD 기반 LLR 발생은 다음과 같다.

$$LLR(a_k) \tag{4}$$

$$= \log \frac{\sum_{\alpha \in S_k^{(0)}} \exp \left(-\frac{(r - H\alpha)^2}{2\sigma^2} \prod_{i \neq k} \Pr_{\text{LDPC}}(a_i)\right)}{\sum_{\alpha \in S_k^{(1)}} \exp \left(-\frac{(r - H\alpha)^2}{2\sigma^2} \prod_{i \neq k} \Pr_{\text{LDPC}}(a_i)\right)}$$

(4)는 다음과 같이 max-log MAP으로 근사화 가능하다.

$$LLR(a_{k}) = \min_{a \in S_{k}^{(0)}} \left(-\frac{(r-Ha)^{2}}{2\sigma^{2}} - \sum_{k \neq i \text{ and } a_{k} = 1} \Pr_{\text{LDPC}}(a_{k}) \right) - \min_{a \in S_{k}^{(1)}} \left(-\frac{(r-Ha)^{2}}{2\sigma^{2}} - \sum_{k \neq i \text{ and } a_{k} = 1} \Pr_{\text{LDPC}}(a_{k}) \right)$$

$$(5)$$

식 (4), (5)에서 $S_k^{(j)} = k$ 번째 비트가 j(=0,1)를 갖는 심볼 벡터의 집합이며, $a_k = k$ 번째 비트이 다. $\Pr_{LDPC}(a=k)$, (k=0,1) = 0 또는 1에 대한 a priori 값으로 아래의 (6) 와 같이 LDPC 입력과 출력의 LLR인 $LLR_{IN}(a_k)$, $LLR_{OUT}(a_k)$ 과 extrinsic LLR인 $LLR_{EXT}(a_k)$ 을 계산하고 이 값을 이용하여 (7), (8)과 같이 a priori 확률을 계산한다.

$$LLR_{EXT}(a_k) = LLR_{OUT}(a_k) - LLR_{IN}(a_k)$$
 (6)

$$\Pr_{LDPC}(a_k = 0) = \frac{1}{1 + \exp^{LLR_{EXT}(a_k)}}$$
(7)

$$\Pr_{LDPC}(a_k = 1) = 1 - \Pr_{LDPC}(a_k = 0)$$
 (8)

4. 성능 평가

4.1 채널 모델링

실험에 사용한 채널은 MISO 채널은 Implementation Guideline에서 제시하고 있는 (9)와 같다.

$$y(t) = \frac{\rho_{1,0}x_1(t) + \sum_{i=1}^{N} \rho_{1,i}e^{-\mathcal{P}_{1i}}x_1(t-\tau_{1,i}) + A\left[\rho_{2,0}x_2(t) + \sum_{i=1}^{N} \rho_{2,i}e^{-\mathcal{P}_{2i}}x_2(t-\tau_i - \Delta_2)\right]e^{\mathcal{P}_{2i}f_{2i}}}{\sqrt{\sum_{i=0}^{N} \rho_{1,i}^2 + A^2\sum_{i=0}^{N} \rho_{2,i}^2}}$$
(9)

여기서 $A \leftarrow TX2$ 신호의 채널의 TX1 신호의 채널에 대한 상대적인 전력의 크기 비로 본 논문에서는 A = 0dB로 하였다. Δ_2 는 TX2 신호의 상대적인 지연 값으로 본 논문에서는 지연이 없는 것으로 가 정하였다. f_{Δ} 는 TXI과 TX2의 주파수 오프셋의 차이로 인해 발생하는 값으로 본 논문에는 오프셋이 없는 경우와 $f_{\Delta} = 0.1$ 인 두 가지 경우를 가정하였다.

4.2 실험 파라미터 및 결과

TX1에서 전송되는 신호와 TX2에서 전송되는 신호가 겪는 채널 값은 (표 1)과 (표 2)와 같다. 실험 파라미터는 다음 (표 3)과 같다. IDD는 Genie- aided를 사용하였으며, 이것은 LDPC 디코 더로부터 정확한 a priori 값이 demapper로 전달되 는 것을 가정한 것으로 iteration을 무한히 반복하 였을 때 없을 수 있는 값이다. C/N (carrier to noise ratio) 당 프레임 에러가 50개 모을 때까지 실험을 하였다.

(표 1)) TX1	신호의	채널

i	$\rho_{1,i}$	$ au_{1,i}$	$\theta_{1,i}$
1	0,057662	1,003019	4,855121
2	0,176809	5,422091	3,419109
3	0,407163	0,518650	5,864470
4	0,303585	2,751772	2,215894
5	0,258782	0,602895	3,758058
6	0,061831	1,016585	5,430202
7	0,150340	0,143556	3,952093
8	0,051534	0,153832	1,093586
9	0,185074	3,324866	5,775198
10	0,400967	1,935570	0,154459
11	0,295723	0,429948	5,928383
12	0,350825	3,228872	3,053023
13	0,262909	0,848831	0,628578
14	0,225894	0,073883	2,128544
15	0,170996	0,203952	1,099463
16	0,149723	0,194207	3,462951
17	0,240140	0,924450	3,664773
18	0,116587	1,381320	2,833799
19	0,221155	0,640512	3,334290
20	0,259730	1,368671	0,393889

(표 2) TX2 신호의 채널

i	$\rho_{2,i}$	$ au_{2,i}$	$ au_{2,i}$
1	0,057 662	2,003 019	1,855 121
2	0,176 809	2,422 091	2,419 109
3	0,407 163	1,518 650	3,864 470
4	0,303 585	0,751 772	1,215 894
5	0,258 782	3,602 895	0,758 058
6	0,061 831	0,016 585	2,430 202
7	0,150 340	5,143 556	4,952 093
8	0,051 534	1,153 832	0,093 586
9	0,185 074	2,324 866	4,775 198
10	0,400 967	4,935 570	6,154 459
11	0,295 723	3,429 948	1,928 383
12	0,350 825	1,228 872	2,053 023
13	0,262 909	1,848 831	1,628 578
14	0,225 894	3,073 883	2,128 544
15	0,170 996	1,203 952	4,099 463
16	0,149 723	4,194 207	3,462 951
17	0,240 140	1,924 450	3,664 773
18	0,116 587	2,381 320	3,833 799
19	0,221 155	0,640 512	3,334 290
20	0,259 730	3,368 671	0,393 889

(표 3) 시뮬레이션 파라미터

	Parameter	Options
1	Modulation	16QAM
2	Coding	1/2
3	FEC Type	16K
4	Rotation	False
5	Channel	MISO 채널
6	IDD	Genie aided [2]
7	LDPC iteration	50
8	LDPC algorithm	Sum product algorithm [3]
9	Interleaver	Bit/Cell/Time interleaver

(그림 4)는 위의 파라미터에서의 DVB-T2 MISO 모드 BER 성능이다. Classical BICM은 IDD를 적 용하지 않은 경우이다. IDD를 적용할 경우, BER =10⁴에서 2dB의 이득이 있음을 볼 수 있다. 그리 고 주파수 오프셋이 발생할 경우, 약 1.5dB의 성 능 열화가 있음을 볼 수 있다.

(그림 4) MISO DVB-T2 BER 성능

5. 결 론

본 논문은 IDD 기반 DVB-T2 full 시뮬레이터 를 MISO 채널 환경에서 성능을 평가하였다. 16QAM, R=1/2(short 프레임)에서 IDD를 적용할 경우, BER=10⁴에서 2dB의 이득이 있음을 볼 수 있었다. 또한 안테나 사이의 주파수 오프셋의 영 향으로 대략 1.5dB의 성능 열화가 있음을 확인할 수 있었다.

참 고 문 헌

- ETSI EN 302 755 V.1.1.1 : Digital Video Broadcasting(DVB); Frame structure, channel coding and modulation for a second generation digital terrestrial television(DVB-T2), Sept. 2009.
- [2] DVB Document A133: Implementation Guideline for a Second Generation Digital Terrestrial Broadcasting System(DVB-T2), Feb. 2009.
- [3] M.C. Valenti, S. Cheng, and R. Iyer Seshadri, "Turbo and LDPC codes for digital video broadcasting," Chapter 12 of Turbo Code Applications: A Journey from a Paper to Realization, Springer, 2005.

● 저 자 소 개 ●

1994년 중앙대학교 전기공학과 졸업(학사) 1997년 중앙대학교 대학원 전기공학과 졸업(석사) 2007년 중앙대학교 대학원 전자전기공학과 졸업(박사) 1997년~현재 전자부품연구원 모바일단말연구센터 센터장 관심분야 : 차세대 방송통신시스템, 방송통신융합기술, etc. E-mail : paikjh@keti.re.kr

서 정 욱

백 종 호

1999년 한국항공대학교 통신정보공학과 졸업(학사) 2001년 한국항공대학교 대학원 통신정보공학과 졸업(석사) 2010년 연세대학교 대학원 전기전자공학과 졸업(박사) 2001년~현재 전자부품연구원 모바일단말연구센터 선임연구원 관심분야 : 통계적 신호처리, 방송통신시스템 설계, etc. E-mail : jwseo@keti.re.kr

강 민 구

1986년 연세대학교 전자공학과 졸업(학사) 1989년 연세대학교 대학원 전자공학과 졸업(석사) 1994년 연세대학교 대학원 전자공학과 졸업(박사) 1985년~1987년 삼성전자 연구원 1997년~1998년 일본 오사카대학 Post Doc. 2000년~현재 한신대학교 정보통신학과 교수 관심분야 : 디지털방송, 방송통신융합기술, etc. E-mail: kangmg@hs.ac.kr

전 은 성

2005년 연세대학교 전기전자공학과 졸업(학사) 2007년 연세대학교 대학원 전기전자공학과 졸업(석사) 2007년~현재 연세대학교 대학원 전기전자공학과 박사과정 관심분야 : Iterative Detection, 동기기술, etc. E-mail : youngmil2@yonsei.ac.kr

김 동 구 1983년 한국항공대학교 통신공학과 졸업(학사) 1985년 University of Southern California (USC) 대학원 전기공학과 졸업(석사) 1992년 University of Southern California (USC) 대학원 전기공학과 졸업(박사) 1994년~현재 연세대학교 전기전자공학과 교수 관심분야 : CDMA 이동통신, 다중접속 기술, 변조 및 채널 부호화 기술, 스케줄링/MAC 기술, 순방향 링크 빔성형 기술 및 MIMO 기술, UWB, Binary CDMA, etc.

E-mail : dkkim@yonsei.ac.kr