
한국 인터넷 정보학회 (11권3호) 65

유비쿼터스 헬스케어 시스템에서 이동에이전트
기반 균형화 클러스터링

☆

Balanced Clustering based on Mobile Agents for the Ubiquitous
Healthcare Systems

마테오 로미오* 이 재 완** 이 말 례***

Romeo Mark A. Mateo Jaewan Lee Malrey Lee

요 약

유비쿼터스 헬스케어에서 지능형 의사결정지원 및 빠른 진단결과를 제공하기 위한 자동진단은 일반적으로 에이전트 시스
템에 의해 수행된다. 본 연구에서는 이동에이전트기술을 사용하여 저 부하 노드에 효율적으로 프로세스를 이주시켜 부하를
분산시키도록 유비쿼터스 헬스케어시스템을 설계하였다. 또한 실시간 자동진단시스템을 지원하는 이동에이전트 중심의 유비
쿼터스 헬스케어 기술을 위한 프레임워크를 제시하며, 효율적인 자원활용을 고려하여, 노드들 내에 있는 프로세스의 부하분산
을 위한 균형화된 클러스터링을 제안한다. 제안한 알고리즘은 시스템의 부하분산이 최소화될 때까지 과부하된 노드를 선택하
여 프로세스를 가까운 노드에 이주시킨다. 제안한 균형화 클러스터링은, 가까운 노드에 이주시킴으로써 메시지오버헤드를 감
안할 때, 효율적으로 프로세스를 모든 노드에 분산시킨다.

ABSTRACT

In the ubiquitous healthcare, automated diagnosis is commonly achieved by an agent system to provide intelligent decision

support and fast diagnosis result. Mobile agent technology is used for efficient load distribution by migrating processes to a less

loaded node which is considered in our design of a ubiquitous healthcare system. This paper presents a framework for

ubiquitous healthcare technologies which mainly focuses on mobile agents that serve the on-demand processes of an

automated diagnosis support system. Considering the efficient utilization of resources, a balanced clustering for the load

distribution of processes within nodes is proposed. The proposed algorithm selects overloaded nodes to migrate processes to

near nodes until the load variance of the system is minimized. Our proposed balanced clustering efficiently distributes processes

to all nodes considering message overheads by performing the migration to the near nodes.

☞ KeyWords : 클러스터링, 부하균형,유비쿼터스 헬스케어, 이동에이전트, Clustering, load balancing, ubiquitous healthcare,

mobile agents

 * 준 회 원 : 군산대학교 전자정보공학부 박사과정

rmmateo@kunsan.ac.kr

 ** 종신회원 : 군산대학교 정보통신공학과 교수

jwlee@kunsan.ac.kr (교신저자)

*** 정 회 원 : 전북대학교 영상정보신기술 연구 센터,

컴퓨터공학부 교수

mrlee@chonbuk.ac.kr

[2009/05/27 투고 – 2009/06/19 심사(2009/10/19 2차) –

2009/12/29 심사완료]

☆ This research was supported by grant R01-2006-000-10147-0

from the Basic Research Program of the Korea Science and

Engineering Foundation

1. Introduction

Ubiquitous healthcare system is a popular research

to apply wireless sensors and intelligent agents for

real time monitoring of patients [1] and accurate

diagnosis for decision support [2], respectively.

Software agent guided by rules in performing a task

is another consideration in ubiquitous computing.

Agent technology is mostly used to automate tasks

in ubiquitous environment [3]. In designing a system

in ubiquitous environment, we must identify the

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

66 2010. 6

constraints like limitation of resources. Processing a

large amount of information or adding additional

features can be also limited. Another challenge that

needs lots of considerations is designing a

transparent ubiquitous system. These limitation is

tackled in some researches [4,5] by their proposed

middleware for mobile and ubiquitous environment.

This approach provides an abstraction between

applications and underlying network infrastructure.

Quality of service is mostly obtained by providing

fast responses on requests and this can be achieved

by replicating the services. In replication schemes,

the client requests are distributed to replicates which

minimize queues of requests providing a faster

response. The cloning and migration scheme of

mobile agents [6] have same concept as replication.

Like replication, mobile agent technology provides

quality of service by cloning agents but agents can

move to a different node to process its task. This

technique is also used in load balancing [7,8]. Most

of the researches focus on the mechanism triggering

the migration based on thresholds that indicates

overloading and finds another least loaded node to

deploy the agent. Having no knowledge about the

network topology, a mobile agent can be deployed to

a far node which produces message overhead in

communication. The migration of mobile agents that

considers the link communication from node source

of agent to its destination node is significant in

providing efficient load distribution and QoS to

clients.

This paper presents a design of a ubiquitous and

intelligent middleware that mainly supports the

transparency of interaction of components in

ubiquitous computing. Autonomous agents are

included in the middleware framework to represent

the intelligent application components. The

framework is applied for the ubiquitous healthcare

for senior citizens to monitor health status and to

provide necessary healthcare services. The cloning

scheme is done by healthcare agents for the QoS of

the system. To distribute efficiently these mobile

agents within the nodes, a balanced clustering is

proposed. The balanced clustering minimizes the

variation of loads in the system by deploying agents

from loaded node to its near nodes that have fewer

loads. We compared our approach to the common

load balancing schemes and the proposed algorithm

was more efficient in distributing loads.

2. Ubiquitous Middleware

Ubiquitous computing concepts have emerged not

only on providing information wirelessly but also

automate services based on the context information

from user profiles and the environment. Current

middleware technologies for mobile and ubiquitous

support are limited in providing transparency of

services to mobile users which are tackled by some

researches [4, 5]. The middleware for mobile

computing based on mobile agents (MA) is proposed

by Belevista et. al [4]. With the use of autonomous

mobile agent, users can access services even if a

terminal disconnected because an agent delivers the

results upon reconnection. The HOMEROS is

proposed [5] which allow high flexibility by

adopting a hybrid-network model and dynamically

configurable reflective object request broker (ORB)

to provide flexibility on wireless applications. In our

proposed middleware, agent mobility and scalability

to integrate additional components is considered.

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

한국 인터넷 정보학회 (11권3호) 67

3. Ubiquitous Healthcare using

Intelligent Distributed

Framework

The target application of our proposed middleware

is the ubiquitous healthcare for senior citizens. The

proposed middleware supports the specifications of

devices like sensors that are implemented in the

spontaneous network. The ubiquitous environment

specifications are different from a classical

distributed environment. In our proposed middleware,

mobility of programs and flexible on adding

components are supported shown in Figure 1. It also

supports agent protocols for the execution of

application and efficient services interaction to serve

agents through their tasks in a transparent manner.

Distributed and wireless environment

Static Agents

Mobility Middleware

Locator
Service

Knowledge -base
System

Cloning
Service

Monitoring
Service

QOS
Manager

Group
Manager

Mobile Agents

Patient Cloned
Specialist Specialist

Wireless
boundary

Application
Layer

Logical
Layer

Physical
Layer

Fig. 1 Ubiquitous and intelligent framework is a

middleware that implements distributed task by

agent technology and gathering by sensor

devices. Services specialized for the ubiquitous

devices supports the system communication.

The framework design is divided into three layers.

First, application layer is consisted of agents that

apply the role of a healthcare system. Specialists or

physician agents monitors an individual through its

patient agent. A patient agent contains information

about the individual it represents. Moreover,

applications layer considers the requirement of

logical layer. Logical layer serves between the

application layer and physical layer, and its

executions are transparent to those layers. Physical

layer consists of different hardware like mobile

devices, ubiquitous wheel chairs, computers and

others. Services from the logical layer are the

following:

Locator service – locates the appropriate

physician to monitor a patient using mobile devices.

The classification method is used to choose the

appropriate physician agents for a patient. This also

coordinates with the monitoring service in

performing the proposed balanced clustering.

Cloning service – performs the cloning of agents

and deployment of mobile agents through base

stations. The cloning service communicates to locator

for request of service.

Monitoring service – monitors the activities of

every services and agents. All events are monitored

and recorded by the monitoring service.

Group manager – manages the grouping of

agents on all base stations. The grouping manager

decides the migration based on the proposed

balanced clustering.

QOS manager – implements the efficient

coordination of the services to perform quality of

service.

4. Balanced Clustering using

Mobile Agents

Agents in our framework are components of a

healthcare system, specifically, physicians and

patients. In our previous work [9], an expert mobile

agent (EMA) classifies data of a patient using the

neuro-fuzzy algorithm. Similarly, we followed the

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

68 2010. 6

design patterns from the previous work. The

physician agent is used to monitor and diagnose an

illness of a patient while the patient agent

representing a real patient provides necessary data to

physician agent. Moreover, the physician agents are

cloned for faster response and increase throughputs.

In our scheme, we assumed the number of clones

(A= {a1, a2,…,an}) is equal to number of request (Q

= { q1, q2,…,qn } where A=Q).

4.1 Balanced Clustering

Classical clustering methods [10 11, 12] perform

grouping based on the nearest property of a given

value or providing center values of a group. A

typical objective function is shown in Equation 1

where the main parameters are vectors uk and cluster

centers ci.

∑ ∑∑
= ∈==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

c

i Ck
ikik

c

i
i

ik

mJJ
1

2

,11 u

cu
(1)

The Ji is minimized by several iterations and stops

if either the improvement over the previous iteration

is below a certain tolerance or Ji is below a certain

threshold value. In our proposed framework, a

clustering technique that balances current processes

on each node or base station using mobile agents to

maximize the contribution of all nodes within the

process. The total loads of each base station must be

approximately equal to other base stations. In the

proposed framework, a static network topology of

base stations and several agents that can migrate to

base stations are assumed. Each agent has its original

source node that is basis of cloning. The setting of

an agent is mainly configured by a physician but the

clone’s iterinary is processed by the proposed

clustering method. To provide the quality of service

within the system, agents in different base station are

deployed considering the least number of links that

can delay the communication to clients and original

source of agent. We assumed that the network

topology is stationary and input variables are moving

clients and agents migrating to another base station.

The mean and standard deviation is used to

determine the current load distribution from all base

stations (N={n1, n2,…ni}). The loads of a single

base station are calculated by summing up all agents

with its processing time (x) that are currently in base

station. Equation 2 shows the mean of all processing

time in a node.

∑
=

=
N

n
nxN 1

1µ
(2)

Equation 3 is the load variance based on the

standard deviation of total loads where μis the

mean load and x is the load of a single base station.

We process all load values in Equation 3 and get the

value of σfor the load analysis to be used in agent

migration.

∑
=

−=
N

n
nxN 1

1 µσ
(3)

We determine the minimum value of σto

terminate the process which means that it provided

the optimal value of the process. In the first run, the

algorithm finds the highest load from the base

station and determines the candidate agents needed

to be deployed. The selected highest loaded base

station deploys its excess agents to the next neighbor

base stations. The overload is calculated by

subtracting current load of base station to mean load.

To determine the agents which needed to be

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

한국 인터넷 정보학회 (11권3호) 69

deployed, excess agents are determined by selecting

the agent to be collected in D, while total loads from

D is approximately equal to overload. The collection

of these agents to be deployed is shown in Equation

4.

∑ =
=

N

n nacandidateD
0

)((4)

The function candidate() collects the index of an

agent until the loads from D is approximately equal

to the overload. After determining the candidate

agents, the proposed algorithm selects neighboring

base station to deploy the agents. The selection of

candidate neighbor base station is determined by

degree links (d). We set the degree of link before

processing deployment. If the load is less than mean

load then nearest node with available resources are

processed by deployment first. The deployment of

agents is shown in Equation 5 where procedure

includes the looping of candidate agents to be

deployed and all neighboring base station. The

number of neighboring base station is indicated by L.

The f(x) is a function to determine if the base station

has available loads while operating the loop of

deployment.

∑ ∑
=

=
L

linkindexl

D

agentindex
axfJ)(

(5)

Equation 6 represents the function of determining

the available resources from the base station

indicated by aload. If aload < 0 then it migrates a

candidate agent from A and subtract the load of that

agent to current load or aload.

⎩
⎨
⎧ <−

=
else

aloadifbsxmigrateagentloadaload
xf la
a ,0

0),,(&
)(

(6)

Deployment procedure from Equation 5 will

continue if all agents from A are not deployed. If

not all agents are deployed within its first degree

neighbors, the next degree neighbors is used to

process the Equation 5. The degree neighbor is

determined by the hop links from source node to

destination of deployment. This method continues

until all candidate agents are deployed and it reaches

maximum degree neighbor represented by d. After

deploying all candidate agents, the algorithm

compares again the distribution of loads. If σis

minimal then the process is terminated. The

summary steps of the algorithm are shown:

1. Determine the number of agent clones base on

the number of request.

2. Calculate the load distribution that includes

total loads, mean and standard deviation.

3. Base on step 2, determine the loaded node and

candidate agents needed to deploy.

4. Deploy the candidate agents to nearest neighbor

links.

5. If candidate agents are not all deployed then

use the next degree links of loaded node.

6. Calculate load distribution in step 2, if

minimum then stop, if not then continue the

deployment process.

BS0

BS1

BS2

BS3

BS4

BS0

BS2BS4

BS3
BS1

(A) (B)

Fig. 2 Graphical result of balanced clustering. In

A represents the initial deployment of mobile

agents and B is the final deployment.

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

70 2010. 6

Figure 2 shows a graphical illustration of

deploying mobile agents in base stations during the

process of proposed algorithm. In Figure 2A shows

a static network topology of base station with 5

nodes and having the corresponding links: bs0 bs1,

bs0 bs2, bs1 bs3, bs2 bs4 and bs3 bs4. There

are 30 agents and initially distributed within base

stations: bs0=10, bs1=7, bs2=4, bs3=5 and bs4=4.

These agents are determined by number of request in

the system to perform cloning and migration. There

are 5 classes of physician agents and also differ in

load. Figure 2B is the final distribution of mobile

agents to all base station. Moreover, the migration of

an agent chooses the nearest neighbor to prevent

delay communication to its source node. In Figure 3,

we show the pseudo codes of the algorithm.

N collection of all nodes, d maximum link degree
for each request doCloneAgent(request)
end for
function LoadDistribution()
X→loads(N)
m→Average(X)
std→StandardDev()
end function
while not min(std) do
loaded→CandidateNode(N)
agents→CandidateAgents(loaded), a ∈ agents
DeployAgents(loaded, agents, degree)LoadDistribution()
end while
function DeployAgents(node, agents, degree)
L→neighbors(node), degree++
for each l ∈ L where x→load(l) do
if x < m then

while aload < 0 domigrate(a, l), next a
aload→TotalLoad(l)

end while
 end if
end for
if agents is not equal to 0 and degree is

not equal to d then
for each l ∈ L

DeployAgents(l, agents, degree)
end for

end if
end function

Fig. 3 Pseudo code of the proposed balanced

clustering.

Figure 3 shows the pseudo-code of the proposed

balanced clustering. The load analysis codes is stated

at LoadDistribution() function while deployment of

agents using the values on load analysis is stated at

DeployAgent() function. In executing agent

deployments, we need to provide a constant value on

maximum link degree. Supposedly, we found out

that αis the appropriate value for the maximum link

degree and increasing d will not affect the agent

migration because it always terminates at α. Setting

d >αprovides a low load variation because it may

deploy all overloads from the loaded node to its

neighboring nodes and thus lowering the value of σ.

However, if an agent was deployed far from the

original node then it needs several hops to

communicate from deployed node. Setting d <αwill

limit hop counts but may stop while the overload

from the loaded node is not well distribute which is

a tradeoff.

5. Experimental Evaluation

The proposed system is simulated using Jade

Framework, a Java implementation of multi-agent

system, where the components and mobile agents

were designed. We used 10 computers, running in

Pentium 4 processors, to host agents and serve as

base stations. Wireless sensors and embedded

devices used for ubiquitous healthcare in a local

wireless area are managed by these base stations.

Middleware services are implemented in Java codes

and integrated to Jade to acquire the functionality of

different services in our proposed framework. Mobile

agents are used in load balancing techniques [7,8].

To efficiently distribute the load processes of agents

in the framework, we used our proposed balanced

clustering. Moreover, the load distribution

performance of proposed balanced clustering is

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

한국 인터넷 정보학회 (11권3호) 71

compared to least load selection, random load

distribution and no distribution method.

5.1 Environment

We configured 10 base stations (bs) and having

the corresponding links: bs0↔(bs1, bs2, bs3), bs1↔

(bs0, bs4, bs5), bs2↔(bs0, bs6, bs7), bs3↔(bs0, bs8,

bs9), bs4↔(bs1, bs5, bs6), bs5↔(bs1, bs4, bs9), bs6

↔(bs2, bs4, bs7), bs7↔(bs2, bs6, bs8), bs8↔(bs3,

bs7, bs9) and bs9↔(bs3, bs5, bs8). We assumed the

initial distribution of mobile agents is based on the

number of requests (Q=100) within the base station:

bs0=20, bs1=8, bs2=9, bs3=10, bs4=8, bs5=2,

bs6=23, bs7=7, bs8=10, and bs9=3. There are 10

classes of physician agents and differ in processing

time of a request: a0=2000ms, a1=3000ms,

a2=2000ms, a3=3000ms, a4=1000ms, a5=2000ms,

a6=3000ms, a7=2000ms, a8=3000ms, and

a9=1000ms. Using these parameters, the performance

of our proposed algorithm and other traditional

algorithms [13] in balancing method was compared.

5.2 Simulation Result

The mean represents an ideal value of a load in

each base station while the standard deviation

evaluates distribution performance of a load

balancing technique. We get the proportion (r) of

standard deviation to its mean value shown in

Equation 7 where the value closer to 0 means that

the distribution technique is efficient. Number of

hops or communication overhead (λ) produced by

the algorithm is also evaluated. This is the number

of agent’s hops in moving to another base station

where the original base station or source node stores

data. It is assumed that after deployment of an agent

to another base station, it still needs to communicate

through its source node and thus causes message

overheads. The comparison of algorithms using r and

λ is shown in Table 1 where A is the number of

agents deployed in a node and L is the total loads.

µ
σ

=r
(7)

The least load selection scheme distributes excess

load processes from highest loaded node and migrate

these to the least loaded node. Like our proposed

algorithm, this technique provides a delay cost in

analyzing the loads and deciding the migration of

agents. While this procedure can distribute resources

efficiently, it does not consider the communication

overheads. This overhead is determined by the hop

links when an agent has migrated to another host. In

the random distribution, migration procedure is done

randomly which has no delay cost in analyzing but

can have a high load variations. The no distribution

method is also compared which has no cost in

analyzing loads and communication overhead in

migration but has the highest r result compared to

all algorithm in performing load distribution. Using a

100 request which will generate 100 clones, the

result from Table 1 shows that our algorithm is

better of 19 hops compared to the least load

selection which is also a factor in having fast

response time. Also, it shows a good load

distribution compared to random and no distribution

methods. Our proposed balanced clustering

distributes efficiently loads and considers minimal

hops. The number of hops to communicate from

deployed agents is less because it chooses the

nearest base station in processing migration unlike in

the least load selection scheme.

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

72 2010. 6

Table 1. Load distribution performance of balanced

-clustering, least load selection, random

distribution and no balancing method

BS

Balanced

clustering

Least load

selection

Random

distribution

No distribution

method

A/L(ms) λ A/L(ms) λ A/L(ms) λ A/L(ms) λ

0 13/ 26000 18 13/ 26000 21 5/ 10000 30 20/ 40000 0

1 8/ 24000 0 8/ 24000 0 14/ 36000 9 8/ 24000 0

2 11/ 25000 3 12/ 21000 0 17/ 46000 13 9/ 18000 0

3 9/ 27000 10 9/ 27000 3 8/ 23000 9 10/ 30000 0

4 14/ 25000 0 13/ 25000 6 8/ 19000 16 8/ 8000 0

5 9/ 25000 0 9/ 24000 0 18/ 44000 2 2/ 4000 0

6 9/ 27000 19 9/ 27000 30 9/ 21000 36 23/ 69000 0

7 11/ 26000 0 9/ 20000 0 4/ 9000 6 7/ 14000 0

8 9/ 27000 1 9/ 27000 1 11/ 26000 5 10/ 30000 0

9 7/ 14000 0 9/ 25000 0 6/ 12000 2 3/ 3000 0

r=0.091 42 r=0.076 61 r=0.44 128 r=0.57 0

In Table 1, only 100 clients were shown because

more than 100 clients produce a very small value of

r using the proposed algorithm and it is enough to

use for comparison. Figure 4 shows the message

overhead that is produced by number of hops of

deploying agent from its original node to destination

node for balanced clustering (BC), least load

selection (LSS), and random distribution (RD). The

number of hop links is generated by requests and as

the number of requests increases, also the number of

hops increases. The graph shows that BC is better of

54 hops in average than the LLS and outperformed

the RD. The result concludes that our algorithm

provides a low communication overhead.

Message Overhead

0

200

400

600

800

1000

1200

1400

100 200 300 400 500 600 700 800 900 1000

Requests

H
o

p
s BC

LLS

RD

Fig. 4 Communication overhead determined by

number of agent hops generated by requests.

6. Conclusion and Future Work

This paper presents a middleware for ubiquitous

systems that considers efficient load distribution

using mobile agents. The framework was

implemented in the ubiquitous healthcare

environment where the efficient interaction of agents

provides necessary healthcare services for senior

citizens. For fast diagnosis, a cloning scheme for

physician agents was implemented. The proposed

balanced clustering was used to balance the

distribution of processes within the base stations.

The balanced clustering minimized the system load

variation by deploying processes from overloaded

base stations to less loaded base stations. Experiment

evaluation showed that the proposed balanced

clustering was efficient in load distribution and

provides low communication overhead compared to

common load distribution schemes.

The future research will exploit the method to

other fields that implements on-demand processes

like cloud computing. Also, the proposed algorithm

was only simulated in a fixed network topology. The

algorithm will be tested on different types of

network topology and the configurations will be

optimized as its future work.

References

[1] J. Jung, K. Ha, j. Lee, Y.S. Kim and D. Kim,

"Wireless Body Area Network in a Ubiquitous

Healthcare System for Physiological Signal

Monitoring and Health Consulting", IJISP, Vol.

1, No. 1, pp. 47-54, 2008.

[2] B. L. Iantovics, "Cooperative Medical Diagnosis

Elaboration by Physicians and Artificial Agents",

Understanding Complex Systems, pp. 315-339,

2009.

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

한국 인터넷 정보학회 (11권3호) 73

[3] M. Rodríguez and J. Favela, “Autonomous

Agents to Support Interoperability and Physical

Integration in Pervasive Environments”. Proc. of

AWIC, pp. 307-317, 2003.

[4] P. Bellavista, A. Corradi and C. Stefanelli,

“Mobile Agent Middleware for Mobile

Computing”, Computer, Vol. 34, No. 3, pp.

73-81, 2001.

[5] S. W. Han, Y. B. Yoon, H. Y. Youn W. D. Cho,

“A New Middleware Architecture for Ubiquitous

Computing Environment”, Proc. of STFEUS, pp.

117-121, 2004.

[6] O. Shehory, K. Sycara, P. Chalasani, S. Jha,

“Agent Cloning: An Approach to Agent Mobility

and Resource Allocation”, IEEE Communications

Magazine, Vol. 36, No. 7, pp. 63 – 67, 1998.

[7] H.A. Thant, K.M. San, K.M.L. Tun, T.T. Naing,

N. Thein, "Mobile Agents Based Load Balancing

Method for Parallel Applications". APSITT 2005

Proceedings, pp.77 – 82, 2005.

[8] Y.Yang, Y.Chen, X.Cao1, J.Ju1, "Load

Balancing Using Mobile Agent and a Novel

Algorithm for Updating Load Information

Partially", Springer Verlag, LNCS 3619, pp.

1243-1252

[9] R. M. Mateo, L. F. Cervantes, H. K. Yang, and

J. W. Lee "Mobile Agents Using Data Mining

for Diagnosis Support in Ubiquitous Healthcare",

Springer Verlag, LNAI 4496, pp. 795-804, 2007.

[10] J. B. MacQueen, "Some Methods for

classification and Analysis of Multivariate

Observations", Proc. of 5th Berkeley

Symposium on Mathematical Statistics and

Probability, Vol. 1, pp. 281-297, 1967.

[11] M. Berthold and D. J. Hand, “Intelligent Data

Analysis, An Introduction”, Springer, 1999.

[12] J. C. Bezdek, “Pattern Recognition with Fuzzy

objective Function Algorithms”, New York,

Plenum Press, 1981.

[13] O. Othman, C. O’Ryan, and D. C. Schmidt,

“The Design and Performance of an Adaptive

CORBA Load Balancing Service”, IEEE DS

Online, Vol. 2, No. 4, 2001

유비쿼터스 헬스케어 시스템에서 이동에이전트 기반 균형화 클러스터링

74 2010. 6

◐ 저 자 소 개 ◑

Romeo Mark A. Mateo
2004 West Visayas State University, Philippines

BS in Information Technology

2007 Kunsan National University, South Korea

Master of Engineering major in Information and Telecommunications

2007 ~ current Kunsan National University, South Korea

Graduate student in Ph.D course

Research interest : Distributed systems, data mining, fuzzy systems,

 multi-agents, ubiquitous sensor networks, cloud computing

 E-mail : rmmateo@kunsan.ac.kr

이 재 완(Jaewan Lee)
1984년 중앙대학교 이학사-전자계산학

1987년 중앙대학교 이학석사-전자계산학

1992년 중앙대학교 공학박사-전자계산학

1996년 3월~ 1998년 1월 한국학술진흥재단 전문위원

1992 ~ 현재 군산대학교 교수

관심분야 : 분산 시스템, 운영체제,실시간 시스템, 컴퓨터 네트워크, 티미디어 등

E-mail: jwlee@kunsan.ac.kr

이 말 례(Malrey Lee)
1998 년 중앙대학교 컴퓨터공학과 박사

1999~2003: 전남대학교 멀티미디어학과조교수

2003~현재: 전북대학교 전자정보공학부 부교수

관심분야 : 인공지능, 로보틱스, 컴퓨터게임,

멀티미디어, 유비쿼터스 컴퓨팅, 헬스케어응용 등

E-mail: mrlee@chonbuk.ac.kr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

