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라벨 트리 데이터의 빈번하게 발생하는 정보 추출
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요    약

트리 데이터로부터 유용한 정보들을 추출하는 가장 일반적인 방식은 빈번하게 자주 발생하는 서브트리 패턴들을 얻는 것
이다. XML 마이닝, 웹 사용 마이닝, 바이오인포매틱스, 네트워크 멀티캐스트 라우팅 등 빈번 트리 패턴 마이닝은 여러 다양한 
영역에서 광범위하게 이용되고 있기 때문에, 해당 패턴들을 추출하기 위한 많은 알고리즘들이 제안되어 왔다. 하지만, 현재까
지 제안된 대부분의 트리 마이닝 알고리즘들은 여러 가지 심각한 문제점들을 내포하고 있는데 이는 특히 대량의 트리 데이터 
집합을 대상으로 했을 때는 더 심각해 진다. 주요하게 발생하는 문제점들로는, (1) 계층적 트리 구조의 데이터 모델링, (2) 후보
군 유지를 위한 고비용 계산, (3) 반복적인 입력 데이터 집합 스캔, (4) 높은 메모리 의존성이 대표적이다. 이런 문제점들을 
발생하게 하는 주요 원인은, 대부분의 기존 알고리즘들이 apriori 방식에 근거하고 있다는 점과 후보군 생성과 빈발 횟수 집계
에 anti-monotone 원리를 적용한다는 점에 기인한다. 언급한 문제들을 해결하기 위해, 본 저자들은 apriori 방식 대신 
pattern-growth 방식을 기반으로 하며, 빈번 서브트리 추출 대신 최대 빈번 서브트리 추출을 목적으로 한다. 이를 통해 제안된 
방법은, 빈번하지 않은 서브트리들을 제거하는 과정 자체를 배제할 뿐만 아니라, 후보군 트리들을 생성하는 과정 또한 전혀 
수행하지 않음으로써 전체 마이닝 과정을 상당히 개선한다.

ABSTRACT

The most commonly adopted approach to find valuable information from tree data is to extract frequently occurring subtree 

patterns from them. Because mining frequent tree patterns has a wide range of applications such as xml mining, web usage 

mining, bioinformatics, and network multicast routing, many algorithms have been recently proposed to find the patterns. 

However, existing tree mining algorithms suffer from several serious pitfalls in finding frequent tree patterns from massive tree 

datasets. Some of the major problems are due to (1) modeling data as hierarchical tree structure, (2) the computationally high 

cost of the candidate maintenance, (3) the repetitious input dataset scans, and (4) the high memory dependency. These 

problems stem from that most of these algorithms are based on the well-known apriori algorithm and have used anti-monotone 

property for candidate generation and frequency counting in their algorithms. To solve the problems, we base a pattern-growth 

approach rather than the apriori approach, and choose to extract maximal frequent subtree patterns instead of frequent 

subtree patterns. The proposed method not only gets rid of the process for infrequent subtrees pruning, but also totally eliminates 

the problem of generating candidate subtrees. Hence, it significantly improves the whole mining process.

☞ KeyWords : Tree mining, Maximal frequent subtree, Embedded tree, Pattern-growth method, 트리 마이닝, 최대 빈번서브
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1. INTRODUCTION 

1.1 MOTIVATION

One of the most general approaches for modeling 

[2009/03/06 투고 – 2009/03/13 심사 – 2009/04/28 심사완료]

☆ 이 논문은 2009년도 정부(교육과학기술부)의 재원으로 한국

과학재단의 지원을 받아 수행된 연구임(No. 2009-0075771)



라벨 트리 데이터의 빈번하게 발생하는 정보 추출

66 2009. 10

complex structured data is to prescribe the data with 

tree structure. In the database area [1, 2], XML 

documents are rooted trees where the nodes represent 

elements or attributes and the edges represent 

element-subelement and attribute-value relationships. 

In Web traffic mining, access trees are used to 

represent the access patterns of different users [3]. In 

the analysis of molecular evolution, an evolutionary 

tree is used to describe the evolution history of 

certain species [4]. In computer networking, 

multicast trees are used for packet routing [5]. 

With the ever-increasing amount of available tree 

data, the ability to extract valuable information from 

them becomes increasingly important and desirable. 

However, the problem of finding information on tree 

data has not been extensively studied, in spite of its 

applicability to a variety of problems. The first step 

toward finding information from trees is to mine the 

subtrees frequently occurring in the trees. Frequent 

subtrees in a database of trees provide useful 

knowledge in many cases such as gaining general 

information of data sources, mining of association 

rules, classification as well as clustering, and helping 

standard database indexing [6]. However, the 

discovery of frequent subtrees appearing in a 

large-scaled tree dataset is not an easy task. As 

observed in Chi et al's paper [7], due to 

combinatorial explosion, the number of frequent 

subtrees usually grows exponentially with the size 

(number of nodes) of the tree and, therefore, mining 

all frequent subtrees becomes infeasible.

A more practical and scalable alternative is thus 

required, which is the discovery of maximal frequent 

subtrees. A maximal frequent subtree is a frequent 

subtree for which none of its proper supertrees are 

frequent, and the number of them is much smaller 

than that of frequent subtrees. However, mining 

maximal frequent subtrees is still in the immature 

stage and needs to be further researched, compared 

to the substantial achievements in mining frequent 

subtrees. Most existing researches on maximal 

frequent subtrees are inherently complex and cause 

some computational problems. 

1.2 RELATED WORK

The most popular approaches to find useful 

information from trees are either apriori-based[8] or 

frequent-pattern-growth(FP)-based[9]. The algorithms 

based on the former extract frequent subtrees by the 

well known anti-monotone property: every non-empty 

subtree of a frequent tree is also frequent, for 

candidate-generate-and-test. Since it provides 

significant reduction of the size of candidate sets and 

leads to good performance gain, various techniques 

have been applied to improve their efficiency [10, 

11, 12, 13]. They are efficient and scalable when 

short patterns are usually extracted from sparse 

datasets. What if datasets are dense and there are a 

lot of long patterns? That may degrade mining 

performance dramatically because a large number of 

candidates need to be generated and tested.

To solve the problems, FP-growth method is 

extended to mine tree patterns, which avoids the 

generation of candidates in support of the construction 

of concise in-memory data structures that preserve all 

necessary information, recursively partition an original 

database into several conditional databases and search 

for local frequent subtrees to assemble larger global 

frequent subtrees. However, it is not trivial work for 

trees because of two major obstacles: one is to test 

efficiently whether a pattern is a  subtree of a given 

tree in a dataset. The other is to determine a good 

tree growing strategy and avoid tree redundancy. The 

algorithm XSpanner [14] has been recently presented 

to generate frequent patterns without explicit 

candidate generation, however, its recursive 
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projections of a dataset may cause a lot of pointer 

cashing and bad cache behavior.

The goal of the above mentioned algorithms is to 

discover all frequent subtrees from a database of 

trees. However, as observed in Chi et al's papers 

[13], the number of frequent subtrees usually grows 

exponentially with the tree size, therefore, mining all 

frequent subtrees becomes infeasible for a large 

number of trees. The algorithms presented by Xiao 

et al. [15] and Chi et al. [16] attempt to alleviate the 

huge amount of frequent subtrees by finding and 

presenting to end-users only the maximal frequent 

subtrees. The former uses a new compact data 

structure, FST-Forest, to store compressed trees, 

representing the trees in a database. Nevertheless, the 

algorithm uses post-processing techniques that prune 

away non-maximal frequent subtrees after 

discovering all the frequent subtrees. Therefore, the 

problem of the exponential number of frequent 

subtrees still remains. The latter directly aims at 

closed and maximal frequent subtrees only. 

However, it bases on the enumeration trees, which is 

one of branches of apriori techniques. Therefore, this 

algorithm may have the potential problem if a 

dataset is dense and there are a lot of long patterns.

Handling the maximal frequent subtrees is an 

interesting challenge, though, and represents the core 

of this paper. 

2. PROBLEM DEFINITIONS 

General tree concepts  A rooted tree is directed 

acyclic graph satisfying (1) there is a special node 

called the “root” that has no entering edges, (2) 

every other node has exactly one entering edge, and 

(3) there is a unique path from the root to each 

node. A tree is a labeled tree if there exists a 

labeling function that assigns a label to each node of 

a tree. Let T = (r, N, E, L) be a rooted labeled tree, 

where r ∈ N is the root node, N is a set of nodes, 

E is a set of edges, and L is a labeling function 

which maps each node of T to one of labels in a 

finite set L = {l1, l2 ... li}; for any node v ∈ N, L(v) 

assigns the label of v. For brevity, in the remaining 

of this paper, unless otherwise specified, we call a 

rooted labeled tree as simply a tree.

Embedded Subtree  Given a tree T = (r, N, E, 

L), we say that a tree S = (r', NS, ES, L') is included 

as an embedded subtree of T, denoted S ≾ T, iff (1) 

NS ∈ N, (2) for all edges (u, v) ∈ ES such that u 

is the parent of v, u is an ancestor of v in T, (3) the 

label of any node v ∈ NS, L'(v) = L(v). The tree T 

must preserve ancestor relation but not necessarily 

parent relation for nodes in S.

Support and frequent subtree  The primary goal 

of mining some set of data is to provide information 

often occurred in a dataset. However, it is not 

straightforward in the case for trees unlike the case 

for traditional item data.

Let D = {T1, T2, …, Ti} be a set of trees and |D| 

be the number of trees in D, where 0 < i ≤ |D|. 

Given D and a tree S, the frequency of S with 

respect to D, freqD(S), is defined as ΣTi∈D freqTi(S) 

where freqTi(S) is 1 if S is a subtree of Ti and 0 

otherwise. The support of S with respect to D, 

supD(S), is the fraction of the trees in D that have S 

as a subtree. That is, supD(S) = freqD(S) / |D|. A 

subtree is called frequent if its support is greater 

than or equal to a minimum value of support 

specified by users or applications. This user-specified 

minimum value is often called the minimum support 

(minsup or σ). The problem of mining frequent 

subtrees is defined as to uncover all pattern trees S, 

such that supD(S) = ΣTi∈D freqTi(S) / |D| ≥ minsup. 

However, the discovery of frequent subtrees 

appearing in a large set of trees is not easy task to 
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do. The combinatorial time for subtree generation 

becomes an inherent bottleneck of frequent subtree 

extraction and it causes that finding all frequent 

subtrees is impossible.

Given some minimum support σ, a subtree S is 

called maximal frequent with respect to D iff it 

satisfies the following conditions: (1) the support of 

S is not less than σ, i.e., supD(S) ≥ σ. (2) there 

exists no any other σ-frequent subtree S' with regard 

to D such that S is a subtree of S'.

There are fewer maximal frequent subtrees 

compared to the number of frequent subtrees. In 

addition, by uncovering only maximal frequent 

subtrees, we do not lose other frequent information 

by the fact that the set of maximal ones subsumes 

all frequent subtrees.

3. THE PROPOSED ALGORITHM

In this section, we introduce a new pattern-growth 

algorithm SEAMSON (Scalable and Efficient 

Algorithm for Maximal frequent Subtrees 

extractiON) based on its interesting definitions and 

important features. The initial version of SEAMSON 

was presented in [17, 18].

3.1 LABEL PROJECTION 

Finding frequently occurred subtrees is virtually to 

discover the subtrees whose nodes are labeled by 

frequently appeared labels in a given tree database D 

and, therefore, scanning database time to find out 

how many times each label has been used in D is 

one of the time consuming part in mining trees. 

Trees are usually stored in D according to their 

relating documents and each document is treated as 

a transaction. That is document-driven layout. In 

such layout, the whole trees are scanned every time 

whenever frequency is computed for each label and, 

thus, it requires O(|D||Tavg||L|) time complexity to get 

the frequencies of whole labels, where |D| is a total 

number of trees, |Tavg| is an average number of nodes 

of a tree, and |L| is a number of distinct labels. It is 

not serious problem when the number of |D| and 

|Tavg| are reasonably small. It may hinder the 

computation, however, if both values are large, and 

actually in real world, two factors are large.

What if the database has been organized in a 

label-driven layout? A label itself plays the key role 

which is usually performed by tree or transaction 

indexes. All trees in D are reorganized according to 

labels. During scan of the trees in D, all nodes with 

the same label are grouped together. The nodes 

composed of the same tree form a member of the 

group and the number of members actually 

determines the frequency of the given label; the 

maximum number of members is a number of trees 

in D, which is called label-projection. After all 

labels are projected, the document-driven layout is 

changed into label-driven layout in which the time 

complexity to check labels' frequency requires at 

most O(|L||D|). If hash-based search is used, the 

complexity is reduced up to O(|D|).

Definition 1 (label list) Let l be a label in L. 

During pre-ordered scanning trees, tree indexes and 

node indexes which are projected by l construct a 

single linked list. It is called a label list and the 

label list for a given label l is denoted l-list.

The structure of a label list is similar to that of a 

linked list in that it has a head and a body. The only 

difference is the formation and functionality of the 

head. The head of a label list points the first object 

in a body just like the ordinary head of a linked list. 

Along with the indication, the head of a label list 

gives information on which node indexes have been 
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mapped to a projected label. The body of a label list 

follows immediately its corresponding head. The 

main concerns of a body are to evaluate how many 

trees have the key in its paired head and to find 

parents positions of the nodes in the head. The 

former is for dealing with frequencies of each label, 

while the latter is for handling the hierarchical 

information of the label. To achieve such intentions, 

the structure of a body is a sequence of members 

which is arranged in a linear order. Each member is 

an object with one key field, one link field pointing 

to the next member, and one satellite data field.

As a key, a tree index number is used, which 

means that the label in a corresponding head has 

been assigned to the nodes of the tree. During the 

database scan, the member is generated and inserted 

into bodies of label lists. The newly inserted member 

is added to the end of a proper body and the pointer 

field of its previous member points this new 

member. The body of a label list provides the 

method we can judge in how many trees have the 

label of a current label list, that is the number of 

members in a body and we define it as size of a 

label list.

Assume T1, T2, and T3 in D are the trees whose 

at least one node is labeled by l. The nodes having 

l in each tree are: na ∈ T1, nb, nc ∈ T2, and nd 
1 

∈ T3. A number of members of l-list are three 

because 3 trees include the label.  The l-label 

projection, l-list, is〈 (pa, T1, →), (pb pc, T2, →), (pd, 

T3, ε) 〉, where pa, pb, pc, pd are parent node 

indexes, → means a pointer to a next member, and 

ε means an empty pointer.

Definition 2 (label dictionary) The constructed 

label lists are collected and stored in the memory. 

Whenever a label is given, a corresponding label list 

is retrieved and the count of its members is returned. 

Due to its activity, the collection is named as label 

dictionary, denoted Ldic.

As infrequent single-node trees are eliminated in 

conventional approaches, the label lists which do not 

confirm a given threshold δ, δ = σ *  |D|, must be 

pruned from Ldic, because the initial Ldic is analogous 

to a set of all single-node trees of D.

Figure 1 shows an depicted example of how Ldic 

and its label lists are constructed and managed from 

the database D. For easy distinction between nodes 

of different trees, we assign unique consecutive 

indexes in pre-order traversal. The bodies of lists 

decide the frequencies of corresponding labels. For 

instance, the label A does not satisfy the given 

minsup which is set ⅔ because it has only 1 

member in the body of A-list.

Definition 3 (frequent label list) Given a label 

list for l, l-list ∈ Ldic, let |l-list| be a number of its 

members. l-list is said to be a frequent label list iff 

it satisfies the following conditions: (1) |l-list| ≥ δ 

(2) for each member, every parent index p in it, the 

label of p, L(p), has been projected and has 

L(p)-list. (3) |L(p) -list| ≥ δ.

T1 T2 T3

A
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D B E
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1

2
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2217 23 25

18 20
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A
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D
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B
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T12 T12
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T12 T12

T15,7 T15,7

T12 T12

T20 T20

T29 T29

T214 T214

T29 T29

T210,12 T210,12

T29 T29

εT30,16 εT30,16

εT316 εT316

εT320 εT320

εT317,16 εT317,16

εT318,23 εT318,23

εT317,16 εT317,16

A-list

head part body part

(Figure 1) Original tree database and its label 

dictionary Ldic
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A label list is said to be projected from a frequent 

label iff the first condition is satisfied. Since our 

approach is inspired by the pattern growth 

algorithms, the label lists whose projected labels do 

not confirm the first condition cannot be further 

grown. Even a label list is projected from a frequent 

label, it is still not clear if the list is a frequent label 

list or not, because of the structural uniqueness of a 

label list which is one of the key factors in allowing 

SEAMSON not to generate any subtrees.

The parent indexes in members should have 

frequent labels in order the subtrees with size 2 to 

be frequent, and this is checked by the second and 

third condition of Definition 3. However, it rarely 

happens that parent index also has frequent label. In 

that case, such a parent index whose label is not 

frequent can be switched to either one of its 

ancestors which label is frequent, or the root, 

because SEAMSON cares embedded subtrees. Some 

means to manage parent indexes in members is 

required to check the frequency of and to switch 

them, which makes label lists be frequent.

3.2 CANDIDATE HASH TABLE 

Before acquiring frequent label lists, the method 

to make them must be provided, which is the 

distinctive feature of SEAMSON and make it 

differentiate from previous approaches. To this end, 

the label lists whose projected labels do not satisfy 

the condition (1) of the definition 3 are excluded 

from Ldic (now, the current Ldic is denoted Ldic
f) and 

form a special hash table named Candidate Hash 

Table, TC, whose purpose is to determine if a given 

node index has a frequent label or not. If its label is 

found in the table, it means that the label is 

infrequent because its label list is not in Ldic
f. The 

parent indexes of members in Ldic
f are verified and 

switched to fulfill the last two conditions of the 

definition. TC is composed of node indexes, labels of 

the nodes, and label lists, where keys are labels and 

their values which are label lists are returned by a 

hash function H(label). Note that the input of the 

table is node indexes which are mapped to their 

proper labels by L(n). 

Theorem 1 It is infeasible that an identical label 

list is included in both Ldic
f and TC.

Proof. Assume a label list, say l-list, exists in 

both Ldic
f and TC. This situation directly creates 

conflict; It is reasonable l-list has frequent label if it 

is in Ldic
f. Hence, it is never excluded from Ldic

f, 

which means there is no chance for the list to be in 

TC. On the contrary, once l-list is in TC, it indicates 

the label l didn't satisfy a given σ. The label list had 

to be definitely pruned from Ldic. Therefore, any 

label list generated from a label in L is contained in 

either Ldic
f or TC.

It is easily determined by TC if the label of a 

given parent index has projected as one of label lists 

in Ldic
f, then, what about the switching in case the 

label is in TC. As the required method we define the 

following. 

Definition 4 (closest frequent ancestor) Given an 

arbitrary label list in Ldic
f
, any parent index p in its 

members is required to traverse its ancestors if L(p) 

is in TC. During the move toward the root, the 

ancestor index of p is searched what is the first 

ancestor whose label is not in TC. We call this 

ancestor closest frequent ancestor of p, denoted Λp.

Let l1-list (∈ Ldic
f) is a current label list and 

|l1-list| be m. Each member of its l1-list.b is required 

to undertake the following. Let any parent node 

index in members be p. Note that p’s nth ancestor is 

notated by pn (p0 is p itself). (1) Each p of a 
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member is associated to its label by L(p). (2) The 

obtained L(p) is given to TC. If L(p) is not found 

between keys, p has frequent label. Thus, p becomes 

the proper Λp, and the process is terminated. 

Otherwise, p’s label is infrequent. (3) To uncover the 

desired location of L(p), the index is computed by 

H(L(p)). (4) According to H(L(p)), the value L(p)-list 

is returned. (5) Since the value is L(p)-list.b, it 

consists of several members. The node indexes in the 

members correspond to those of p
1
. (6) As 

backtracking, (1) to (4) is done against every p1 in the 

value. (7) The p1 whose label is found as the key of 

TC iteratively performs (3) through (6) until Λp
1
 is 

found. For all m members the steps (1) to (7) are 

performed to fill themselves with only closest frequent 

ancestors. What if a proper Λp is not acquired until 

end of backtracks? In such case, none of p's ancestors 

including p itself have frequent labels. That means the 

node index whose label is l1 has no parent node, and 

therefore, it becomes the root. Hence, Λp is set by 0 

to indicate that ‘it is the root position’.

The figure 2 shows TC constructed simultaneously 

with Ldic
f (Here, Ldic

f is the same as Ldic on Figure 1, 

except that it does not contain A-list and C-list has 

been modified by the closest frequent ancestor.

A

key index value

1

node index
L(1)

0 T1 ε0 T1 ε
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1 T11 T1 0 T20 T2 0, 16 T3 ε0, 16 T3 εC-list 2,9,16,172,9,16,17

0 T10 T1

2 T12 T1

3 T13 T1

2 T12 T1

5, 7 T15, 7 T1

2 T12 T1

0 T20 T2

9 T29 T2

14 T214 T2

9 T29 T2

10,12 T210,12 T2

9 T29 T2

0, 16 T3 ε0, 16 T3 ε

16 T3 ε16 T3 ε

20 T3 ε20 T3 ε

16,17 T3 ε16,17 T3 ε

18,23 T3 ε18,23 T3 ε

16,17 T3 ε16,17 T3 ε

C-list

D-list

G-list

B-list

F-list

E-list

2,9,16,172,9,16,17

3,10,223,10,22

4,15,214,15,21

5,12,18,235,12,18,23

6,8,11,13,19,246,8,11,13,19,24

7,14,20,257,14,20,25

TC

Ldic
f

?0
L(0)

(Figure 2) Discovery and replacement of Λ1

3.3 LABEL LIST EXTENSION 

The finally obtained Ldic
f
 contains all frequent 

label lists, which implicitly indicates the projected 

labels are all frequently occurred and every node 

index is mapped by one of them. Then, what about 

paths between nodes if the nodes are explicitly 

linked? In such case, the paths could possibly be 

frequent, however, that is not guaranteed because of 

the fact that a path is a sequence of edges. Let an 

edge e connect exactly two distinct nodes v1, v2 

labeled by a and b, which is notated e = (v1, v2) = 

(L(v1), L(v2)) = (a, b). If e wants to be a frequently 

occurred edge, the labels a and b must be frequent 

labels. Hence, if a path wants to be a frequently 

appeared path, all edges forming the path should be 

frequently occurred. When let a path be p, it is 

composed of a finite number of edges; p = e1 e2… 

em. The path can also be expressed with labels 

because a path is a sequence of labels as shown on 

the above equations. Therefore, all the labels should 

be frequent in order the path to be frequent. 

However, it is not guaranteed when edges between 

nodes are explicitly unveiled from Ldic
f
, because only 

nodes and labels were considered to build the initial 

Ldic. During the read of label lists, edges are formed 

by joining a symbolic node whose label is the 

projected label and symbolic nodes of parent 

indexes’ labels in its members. Unveiling edges 

totally relies on every frequent label lists, because 

the symbolic nodes of parent indexes' labels have 

also their frequent label lists. The hidden paths 

between label lists are discovered by extending the 

node of a current label with the nodes of other label 

lists.

Definition 5 (label list extension) Given Ldic
f, let 

a current label list be l-list and p be one of parent 

indexes in its members. For l-list, firstly a symbolic 
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node whose label is l is set and the node is prepared 

to join with its parent. The second symbolic node is 

set from the parent index p. Its label is easily 

obtained by L(p) and the corresponding L(p)-list is 

in Ldic
f due to the definition 3. Consequently, the 

node labeled by l is joined to the node labeled by 

L(p). We call this operation label list extension and 

denote l ← L(p) where ‘←’ indicates the direction 

of parent to child.

Note that the extension is performed with labels 

not the node indexes. The node index is just used to 

get label or its corresponding label list. A symbolic 

node is created whenever a label requires it. The 

fundamental method is actually to extend label. The 

label list extension is committed to every label list in 

Ldic
f. After completing the work of extension, the 

labels in head parts are connected each other via 

nodes. The structure of the result is a tree whose 

root is labeled by /. This tree contains all of 

potentially maximal frequent subtrees and thus is 

named Potentially Maximal Pattern tree (PMP-tree in 

short). The detailed is followed.

Two times of Ldic
f scans are required. First, only 

head parts of label lists are scanned to determine 

how many symbolic nodes are needed. This number 

depends on |Ldic
f| since head part exists per label. 

The settled number of nodes are created and related 

by labels in head parts. During the first scan, the 

nodes are fixed and they are never changed because 

label list extension is performed on the basis of 

those nodes and PMP-tree is also derived from them. 

These nodes are called seeds of PMP-tree. Each seed 

contains three fields; cnt field for edge frequency, 

and two pointer fields: prt and suc for parent node 

and successor node, respectively. The detailed roles 

of fields will be explained in the paragraph for 

second scanning.

Along with the determination of seeds, one table 

is constructed with labels and seeds. This table 

facilitates the traversal of PMP-tree by providing 

location information of seeds. Once a label is given 

to the table, its corresponding seed’s position in 

PMP-tree is retrieved. Since the table searches nodes 

based on labels, we name it Label Header Table, TL, 

and it is built simultaneously with seeds. TL is 

composed of two columns: label and seed# (location 

of seed). 

The storage size required for saving the table is 

followed. Assuming a size of a single table record x 

and |Ldic
f
| = M, the total required space is fixed at 

xM because seeds are created from the labels of all 

heads in Ldic
f. It has a storage complexity of Θ(x|L|) 

time in the worst case, however, it is unusual that 

every unique label for D is frequent. Therefore, the 

actually necessary space to store TL is much smaller 

than the worst case, because of M ≪ |L|.

After finishing the first scan, total seven seeds are 

generated from the Ldic
f on Figure 2 and they are 

related their labels in TL via the seed# column. The 

current seeds have empty parents, empty successors, 

and 0 counters. Since not yet performed the label list 

extension, no relation is expected between seeds. To 

process label list extension over the seeds, Ldic
f is 

scanned for the second time and last time. During 

this scanning period, the body parts in turn are 

analyzed, which have been skipped at the first scan. 

The parent indexes of each member are spliced with 

the existing seeds by following steps: (1) Let a seed 

of a current reading label list, l-list, be sl associated 

with a label l in TL. (2) For a parent index p in a 

member of body of l-list, obtain a label of p by 

L(p). (3) According to Definition 3, the label L(p) 

forms a record of TL and is associated with one of 

seeds. (4) Look up the table TL to get the seed# 

which corresponds to L(p); let the corresponding 
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seed be sL(p). (5) If sl has empty prt which means it 

is not yet linked with any parent node, the seed sL(p) 

is the firstly appeared its parent. Hence, the seed# of 

sL(p) is stored in the prt of sl; this action directly 

perform sl ← sL(p). Also, the cnt of sL(p) is 

incremented by 1 because an edge between sl and 

sL(p) has been formed and it occurred. The value of 

cnt implies frequency of an edge which is formed 

between a current seed and a parent seed. Instead of 

incrementing the current seed’s cnt, we choose to 

increment the parent seed’s cnt because the parent 

seed is end point of an edge. Because making edge 

is completed by the parent seed, the information of 

edge frequency has to be kept in parent, which 

means “child seed and I occurred together as many 

as my cnt times”. Thus, we increment the edge 

frequency in parent seed.

It is trivial work to link sl to sL(p) when prt of sl 

is empty. However, what if prt of sl is already 

preoccupied by another seed#, say sL(q)? There are 

two cases depending on whether sL(p) = sL(q) or not, 

and the step (5) in the previous paragraph is replaced 

by the following: (5-1) If sL(p) ← sL(q), the fact has 

to be taken into account that the seed sl has more 

than one parents with different labels. To cope with 

such situation, we add a successor at the end of the 

seed sl, or at the last successor if sl already has 

successors. Successor has exactly same structure as 

that of seed. Without using successors one child can 

have several parents and it causes the graph structure 

which requires NP-complete subtree decomposition. 

In case of that sl has successors, the values in all 

prts of sl and its successors have to be compared 

with the seed# of sL(q). If not found the same value, 

sL(q) is another parent seed of sl, thus, a new 

successor for sl is attached at the end of successors 

and it is linked with sL(q). (5-2) In case of that sL(p) 

is equal to the preoccupied prt value sL(q) or any one 

of prt values in sl’s successors, cnt of sl or 

corresponding successor is incremented by 1. 

Because the edge of between sl and sL(p) has been 

already made, the only work is to increase the 

frequency; the already existing edge corresponds 

either to sl ← sL(q) or to sl.suc ← sL(p) (6) The 

procedures from step (2) to (5-2) is repeated until all 

parent indexes in Ldic
f are considered. 

Figure 3 illustrates both the table TL and the 

derived PMP-tree from Figure 2. The currently 

obtained PMP-tree is composed of many edges 

which link between seeds or successors. Connecting 

nodes in a tree implies the extension of tree. The 

frequency of nodes is considered in PMP-tree, 

however, the frequency of edges is not guaranteed. 

Therefore, frequency of an edge has to be considered 

to complete the PMP-tree. This is done by marking 

the counts of edges in the field cnt of each seed or 

successor. If s.cnt is less than a given threshold, s 

and its entering edge are not frequent. Thus, both are 

spliced out from a current PMP-tree. On the figure, 

only the edges with bold lines are remained edges in 

PMP-tree.

700G

600F

500E

400D

300C

200B

100/

seed # label

700G

600F

500E

400D

300C

200B

100/

seed # label
100100

300 100 3300 100 3

400 300 3400 300 3 300 1300 1

500 300 3500 300 3

200 300 3200 300 3

600 200 3600 200 3

500 1500 1

400 1400 1

700 400 1700 400 1

500 2500 2

prt cnt suc

G700

F600

E500

D400

C300

B200

/100

label seed #

G700

F600

E500

D400

C300

B200

/100

label seed #

(Figure 3) Final PMP-tree derived from Ldic
f

4. EXPERIMENTS

We performed some experiments to evaluate the 

performance of SEAMSON algorithm using synthetic 

datasets. All experiments were done on a 2.2GHz 



라벨 트리 데이터의 빈번하게 발생하는 정보 추출

74 2009. 10

AMD Athlon 64 3500+ PC with 1GB main memory, 

running Windows XP operating system. All 

algorithms were implemented in Java. The synthetic 

datasets are generated by the tree generation program 

whose underlying ideas are inspired by Termier [19] 

and Zaki [12]. The generator constructs a set of trees, 

D, based on some parameters supplied by a user, T: 

the number of trees in D, L: the set of labels, f: the 

maximum branching factor of a node, d: the 

maximum depth of a tree, ρ: the random probability 

of one node in the tree to generate children or not, 

η: the average number of nodes in each tree in D. 

We used the following default values for the 

parameters: T = 10,000, L = 100, f = 5, and d = 5. 

In the following experiments, we first evaluate the 

scalability of our algorithm with varying minimum 

support as well as the number of trees T, while other 

parameters are fixed as: L = 100, f = 5, d = 5, ρ = 

20%, η = 13.8. Second, we present the number 

maximal frequent subtrees under different minsup. 

As the last experiment, the memory usage of 

SEAMSON is evaluated while minsup is 0.2% and 

0.1%, where its characterized processes: constructing 

Ldic, finding closest frequent ancestors, and deriving 

PMP-tree, are especially evaluated for their memory 

consumption. In the figures of experiments, both X- 

and Y-axis are drawn on a logarithmic scale for the 

convenience of observation.
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(Figure 4) Scalability and memory consumption 

of SEAMSON

From Figure 4(a), we can find that the running 

time increases when T increases, however, both 

running times are rarely affected by the decrease of 

the minimum support. With minsup becoming 
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smaller, there is no big difference in execution time 

for both datasets. This is because SEAMSON relies 

on the number of labels not the number of nodes. 

Thus, it is very efficient for datasets with varying 

and growing tree sizes. Then, Figure 4(b) shows the 

scalability with size of dataset ― the number of 

input trees. The parameter T varies from 1,000 to 

15,000 with ρ = 20. We evaluate three different 

minsup, 0.2%, 0.15%, and 0.1%. The corresponding 

graphs show considerable similarity which slowly 

increases until T = 11,000 and suddenly goes up 

between T = 11,000 and T = 13,000. Afterwards, the 

graphs are started to rapidly deteriorate. Our 

understanding of this phenomenon is that the sizes of 

Ldic
f and its label lists are maximized with 100 

distinct node labels when the number of input trees 

reaches at 12,000 and 13,000.

In Figure 4(c) two graphs have analogous patterns 

in a number of maximal frequent subtrees; the 

number of maximal frequent subtrees slowly grows 

before the rapid rise where lies between minsup = 

0.3 and minsup = 0.2.  Afterwards, the number drops 

off and keeps in steady state. The characteristics 

stems from the limited number of labels and its 

random distribution for datasets generation. 

Figure 4(d) shows the trends of memory usage of 

the three processes. In the memory usage, the 

process for constructing Ldic consumes the most 

amount of memory along with the growing number 

of trees. On the contrary, the process for PMP-tree 

consumes almost stabilized amount of memory 

during the experiments ranged from T = 10,000 to T 

= 15,000. Because the former is responsible for 

scanning an original tree dataset and converting them 

into label projected dataset, the required memory 

size is getting larger along with the increase of trees 

in D. The memory usage of the process for finding 

closest frequent ancestors also increases when T 

grows; however, its slope is much smooth and gentle 

compared to that of the first process. It requires less 

memory because it manages the data in the already 

generated structure, Ldic. At the end, the process for 

deriving PMP-tree consumes less than 5MB during 

the experiments. The goal of this process is to derive 

maximal frequent subtrees from the Ldic
f
.

The following Figure 5 evaluates the running time 

of SEAMSON in comparison with PathJoin[15] and 

CMTreeMiner[7]. The parameters for the dataset are: 

T = 12,000, L = 100, f = 5, and d = 5, η = 20, and 

minsups from 100% to 0.0001%. PathJoin shows the 

dramatic increase of time consumption when the 

minsup decreases. Although it is fast for the 

minimum values around 100%, it becomes obvious 

that PathJoin suffers from severe growth of 

computation time from less than 70% while the other 

two do not. It stems from the post-processing 

pruning which is the way PathJoin mines maximal 

frequent subtrees. After obtaining all frequent 

subtrees, PathJoin eliminates those that are not 

maximal. Thus, the number of frequent subtrees is 

getting bigger as the minsup is getting smaller, and 

this is the reason why PathJoin requires the worst 

time consumption compared with SEAMSON and 

CMTreeMiner. The algorithm CMTreeMiner shows 

better running time than PathJoin. However, it still 

gradually increases along with the decrease of the 

minimum value and requires more time consumption 

than SEAMSON. This is because of the large 

amount of candidates generated by apriori-based 

techniques. Compared to the other two, SEAMSON 

shows a different trend of time consumption. In spite 

of decreasing minimum support, it is rarely affected 

by it. This means that the running time of 

SEAMSON has fairly stable condition over any 

minimum support.
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algorithms

5. CONCLUSION

We presented a new concept of label-projection 

and simple lists and labels based approach to extract 

maximal frequent subtrees from a database of trees. 

Unlike the traditional approaches, the proposed 

method did not perform any subtree generation. To 

this end, we devised both a special database Ldic 

which adopted the concept of label-projection, and 

its basic unit, label list, which preserved all 

necessary information to discover maximal frequent 

subtrees.

The beneficial effect of our method is that it not 

only got rid of the process for infrequent tree 

pruning, but also eliminated totally the problem of 

candidate subtrees generation. Hence, we 

significantly improved the whole mining process. To 

the best of our knowledge, the proposed method in 

this paper is the first algorithm that directly 

discovers maximal frequent subtrees without any 

subtree generation.
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