
한국 인터넷 정보학회 (10권5호) 65

라벨 트리 데이터의 빈번하게 발생하는 정보 추출
☆

Frequently Occurred Information Extraction from a
Collection of Labeled Trees

백 주 련* 남 정 ** 안 성 *** 김 응 모****

Juryon Paik Junghyun Nam Sung-Joon Ahn Ung Mo Kim

요 약

트리 데이터로부터 유용한 정보들을 추출하는 가장 일반 인 방식은 빈번하게 자주 발생하는 서 트리 패턴들을 얻는 것
이다. XML 마이닝, 웹 사용 마이닝, 바이오인포매틱스, 네트워크 멀티캐스트 라우 등 빈번 트리 패턴 마이닝은 여러 다양한
역에서 범 하게 이용되고 있기 때문에, 해당 패턴들을 추출하기 한 많은 알고리즘들이 제안되어 왔다. 하지만, 재까

지 제안된 부분의 트리 마이닝 알고리즘들은 여러 가지 심각한 문제 들을 내포하고 있는데 이는 특히 량의 트리 데이터
집합을 상으로 했을 때는 더 심각해 진다. 주요하게 발생하는 문제 들로는, (1) 계층 트리 구조의 데이터 모델링, (2) 후보
군 유지를 한 고비용 계산, (3) 반복 인 입력 데이터 집합 스캔, (4) 높은 메모리 의존성이 표 이다. 이런 문제 들을
발생하게 하는 주요 원인은, 부분의 기존 알고리즘들이 apriori 방식에 근거하고 있다는 과 후보군 생성과 빈발 횟수 집계
에 anti-monotone 원리를 용한다는 에 기인한다. 언 한 문제들을 해결하기 해, 본 자들은 apriori 방식 신
pattern-growth 방식을 기반으로 하며, 빈번 서 트리 추출 신 최 빈번 서 트리 추출을 목 으로 한다. 이를 통해 제안된
방법은, 빈번하지 않은 서 트리들을 제거하는 과정 자체를 배제할 뿐만 아니라, 후보군 트리들을 생성하는 과정 한
수행하지 않음으로써 체 마이닝 과정을 상당히 개선한다.

ABSTRACT

The most commonly adopted approach to find valuable information from tree data is to extract frequently occurring subtree

patterns from them. Because mining frequent tree patterns has a wide range of applications such as xml mining, web usage

mining, bioinformatics, and network multicast routing, many algorithms have been recently proposed to find the patterns.

However, existing tree mining algorithms suffer from several serious pitfalls in finding frequent tree patterns from massive tree

datasets. Some of the major problems are due to (1) modeling data as hierarchical tree structure, (2) the computationally high

cost of the candidate maintenance, (3) the repetitious input dataset scans, and (4) the high memory dependency. These

problems stem from that most of these algorithms are based on the well-known apriori algorithm and have used anti-monotone

property for candidate generation and frequency counting in their algorithms. To solve the problems, we base a pattern-growth

approach rather than the apriori approach, and choose to extract maximal frequent subtree patterns instead of frequent

subtree patterns. The proposed method not only gets rid of the process for infrequent subtrees pruning, but also totally eliminates

the problem of generating candidate subtrees. Hence, it significantly improves the whole mining process.

☞ KeyWords : Tree mining, Maximal frequent subtree, Embedded tree, Pattern-growth method, 트리 마이닝, 최 빈번서
트리, 임베디드 트리, 패턴-성장 방식

* 정 회 원 : 성균 학교 정보통신공학부 연구교수

wise96@ece.skku.ac.kr

** 정 회 원 : 건국 학교 컴퓨터응용과학부 조교수

jhnam@kku.ac.kr

*** 정 회 원 : 성균 학교 정보통신공학부 부교수

finger@skku.edu

**** 정 회 원 : 성균 학교 정보통신공학부 교수

umkim@ece.skku.ac.kr

1. INTRODUCTION

1.1 MOTIVATION

One of the most general approaches for modeling

[2009/03/06 투고 – 2009/03/13 심사 – 2009/04/28 심사완료]

☆ 이 논문은 2009년도 정부(교육과학기술부)의 재원으로 한국

과학재단의 지원을 받아 수행된 연구임(No. 2009-0075771)

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

66 2009. 10

complex structured data is to prescribe the data with

tree structure. In the database area [1, 2], XML

documents are rooted trees where the nodes represent

elements or attributes and the edges represent

element-subelement and attribute-value relationships.

In Web traffic mining, access trees are used to

represent the access patterns of different users [3]. In

the analysis of molecular evolution, an evolutionary

tree is used to describe the evolution history of

certain species [4]. In computer networking,

multicast trees are used for packet routing [5].

With the ever-increasing amount of available tree

data, the ability to extract valuable information from

them becomes increasingly important and desirable.

However, the problem of finding information on tree

data has not been extensively studied, in spite of its

applicability to a variety of problems. The first step

toward finding information from trees is to mine the

subtrees frequently occurring in the trees. Frequent

subtrees in a database of trees provide useful

knowledge in many cases such as gaining general

information of data sources, mining of association

rules, classification as well as clustering, and helping

standard database indexing [6]. However, the

discovery of frequent subtrees appearing in a

large-scaled tree dataset is not an easy task. As

observed in Chi et al's paper [7], due to

combinatorial explosion, the number of frequent

subtrees usually grows exponentially with the size

(number of nodes) of the tree and, therefore, mining

all frequent subtrees becomes infeasible.

A more practical and scalable alternative is thus

required, which is the discovery of maximal frequent

subtrees. A maximal frequent subtree is a frequent

subtree for which none of its proper supertrees are

frequent, and the number of them is much smaller

than that of frequent subtrees. However, mining

maximal frequent subtrees is still in the immature

stage and needs to be further researched, compared

to the substantial achievements in mining frequent

subtrees. Most existing researches on maximal

frequent subtrees are inherently complex and cause

some computational problems.

1.2 RELATED WORK

The most popular approaches to find useful

information from trees are either apriori-based[8] or

frequent-pattern-growth(FP)-based[9]. The algorithms

based on the former extract frequent subtrees by the

well known anti-monotone property: every non-empty

subtree of a frequent tree is also frequent, for

candidate-generate-and-test. Since it provides

significant reduction of the size of candidate sets and

leads to good performance gain, various techniques

have been applied to improve their efficiency [10,

11, 12, 13]. They are efficient and scalable when

short patterns are usually extracted from sparse

datasets. What if datasets are dense and there are a

lot of long patterns? That may degrade mining

performance dramatically because a large number of

candidates need to be generated and tested.

To solve the problems, FP-growth method is

extended to mine tree patterns, which avoids the

generation of candidates in support of the construction

of concise in-memory data structures that preserve all

necessary information, recursively partition an original

database into several conditional databases and search

for local frequent subtrees to assemble larger global

frequent subtrees. However, it is not trivial work for

trees because of two major obstacles: one is to test

efficiently whether a pattern is a subtree of a given

tree in a dataset. The other is to determine a good

tree growing strategy and avoid tree redundancy. The

algorithm XSpanner [14] has been recently presented

to generate frequent patterns without explicit

candidate generation, however, its recursive

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

한국 인터넷 정보학회 (10권5호) 67

projections of a dataset may cause a lot of pointer

cashing and bad cache behavior.

The goal of the above mentioned algorithms is to

discover all frequent subtrees from a database of

trees. However, as observed in Chi et al's papers

[13], the number of frequent subtrees usually grows

exponentially with the tree size, therefore, mining all

frequent subtrees becomes infeasible for a large

number of trees. The algorithms presented by Xiao

et al. [15] and Chi et al. [16] attempt to alleviate the

huge amount of frequent subtrees by finding and

presenting to end-users only the maximal frequent

subtrees. The former uses a new compact data

structure, FST-Forest, to store compressed trees,

representing the trees in a database. Nevertheless, the

algorithm uses post-processing techniques that prune

away non-maximal frequent subtrees after

discovering all the frequent subtrees. Therefore, the

problem of the exponential number of frequent

subtrees still remains. The latter directly aims at

closed and maximal frequent subtrees only.

However, it bases on the enumeration trees, which is

one of branches of apriori techniques. Therefore, this

algorithm may have the potential problem if a

dataset is dense and there are a lot of long patterns.

Handling the maximal frequent subtrees is an

interesting challenge, though, and represents the core

of this paper.

2. PROBLEM DEFINITIONS

General tree concepts A rooted tree is directed

acyclic graph satisfying (1) there is a special node

called the “root” that has no entering edges, (2)

every other node has exactly one entering edge, and

(3) there is a unique path from the root to each

node. A tree is a labeled tree if there exists a

labeling function that assigns a label to each node of

a tree. Let T = (r, N, E, L) be a rooted labeled tree,

where r ∈ N is the root node, N is a set of nodes,

E is a set of edges, and L is a labeling function

which maps each node of T to one of labels in a

finite set L = {l1, l2 ... li}; for any node v ∈ N, L(v)

assigns the label of v. For brevity, in the remaining

of this paper, unless otherwise specified, we call a

rooted labeled tree as simply a tree.

Embedded Subtree Given a tree T = (r, N, E,

L), we say that a tree S = (r', NS, ES, L') is included

as an embedded subtree of T, denoted S ≾ T, iff (1)

NS ∈ N, (2) for all edges (u, v) ∈ ES such that u

is the parent of v, u is an ancestor of v in T, (3) the

label of any node v ∈ NS, L'(v) = L(v). The tree T

must preserve ancestor relation but not necessarily

parent relation for nodes in S.

Support and frequent subtree The primary goal

of mining some set of data is to provide information

often occurred in a dataset. However, it is not

straightforward in the case for trees unlike the case

for traditional item data.

Let D = {T1, T2, …, Ti} be a set of trees and |D|

be the number of trees in D, where 0 < i ≤ |D|.

Given D and a tree S, the frequency of S with

respect to D, freqD(S), is defined as ΣTi∈D freqTi(S)

where freqTi(S) is 1 if S is a subtree of Ti and 0

otherwise. The support of S with respect to D,

supD(S), is the fraction of the trees in D that have S

as a subtree. That is, supD(S) = freqD(S) / |D|. A

subtree is called frequent if its support is greater

than or equal to a minimum value of support

specified by users or applications. This user-specified

minimum value is often called the minimum support

(minsup or σ). The problem of mining frequent

subtrees is defined as to uncover all pattern trees S,

such that supD(S) = ΣTi∈D freqTi(S) / |D| ≥ minsup.

However, the discovery of frequent subtrees

appearing in a large set of trees is not easy task to

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

68 2009. 10

do. The combinatorial time for subtree generation

becomes an inherent bottleneck of frequent subtree

extraction and it causes that finding all frequent

subtrees is impossible.

Given some minimum support σ, a subtree S is

called maximal frequent with respect to D iff it

satisfies the following conditions: (1) the support of

S is not less than σ, i.e., supD(S) ≥ σ. (2) there

exists no any other σ-frequent subtree S' with regard

to D such that S is a subtree of S'.

There are fewer maximal frequent subtrees

compared to the number of frequent subtrees. In

addition, by uncovering only maximal frequent

subtrees, we do not lose other frequent information

by the fact that the set of maximal ones subsumes

all frequent subtrees.

3. THE PROPOSED ALGORITHM

In this section, we introduce a new pattern-growth

algorithm SEAMSON (Scalable and Efficient

Algorithm for Maximal frequent Subtrees

extractiON) based on its interesting definitions and

important features. The initial version of SEAMSON

was presented in [17, 18].

3.1 LABEL PROJECTION

Finding frequently occurred subtrees is virtually to

discover the subtrees whose nodes are labeled by

frequently appeared labels in a given tree database D

and, therefore, scanning database time to find out

how many times each label has been used in D is

one of the time consuming part in mining trees.

Trees are usually stored in D according to their

relating documents and each document is treated as

a transaction. That is document-driven layout. In

such layout, the whole trees are scanned every time

whenever frequency is computed for each label and,

thus, it requires O(|D||Tavg||L|) time complexity to get

the frequencies of whole labels, where |D| is a total

number of trees, |Tavg| is an average number of nodes

of a tree, and |L| is a number of distinct labels. It is

not serious problem when the number of |D| and

|Tavg| are reasonably small. It may hinder the

computation, however, if both values are large, and

actually in real world, two factors are large.

What if the database has been organized in a

label-driven layout? A label itself plays the key role

which is usually performed by tree or transaction

indexes. All trees in D are reorganized according to

labels. During scan of the trees in D, all nodes with

the same label are grouped together. The nodes

composed of the same tree form a member of the

group and the number of members actually

determines the frequency of the given label; the

maximum number of members is a number of trees

in D, which is called label-projection. After all

labels are projected, the document-driven layout is

changed into label-driven layout in which the time

complexity to check labels' frequency requires at

most O(|L||D|). If hash-based search is used, the

complexity is reduced up to O(|D|).

Definition 1 (label list) Let l be a label in L.

During pre-ordered scanning trees, tree indexes and

node indexes which are projected by l construct a

single linked list. It is called a label list and the

label list for a given label l is denoted l-list.

The structure of a label list is similar to that of a

linked list in that it has a head and a body. The only

difference is the formation and functionality of the

head. The head of a label list points the first object

in a body just like the ordinary head of a linked list.

Along with the indication, the head of a label list

gives information on which node indexes have been

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

한국 인터넷 정보학회 (10권5호) 69

mapped to a projected label. The body of a label list

follows immediately its corresponding head. The

main concerns of a body are to evaluate how many

trees have the key in its paired head and to find

parents positions of the nodes in the head. The

former is for dealing with frequencies of each label,

while the latter is for handling the hierarchical

information of the label. To achieve such intentions,

the structure of a body is a sequence of members

which is arranged in a linear order. Each member is

an object with one key field, one link field pointing

to the next member, and one satellite data field.

As a key, a tree index number is used, which

means that the label in a corresponding head has

been assigned to the nodes of the tree. During the

database scan, the member is generated and inserted

into bodies of label lists. The newly inserted member

is added to the end of a proper body and the pointer

field of its previous member points this new

member. The body of a label list provides the

method we can judge in how many trees have the

label of a current label list, that is the number of

members in a body and we define it as size of a

label list.

Assume T1, T2, and T3 in D are the trees whose

at least one node is labeled by l. The nodes having

l in each tree are: na ∈ T1, nb, nc ∈ T2, and nd
1

∈ T3. A number of members of l-list are three

because 3 trees include the label. The l-label

projection, l-list, is〈 (pa, T1, →), (pb pc, T2, →), (pd,

T3, ε) 〉, where pa, pb, pc, pd are parent node

indexes, → means a pointer to a next member, and

ε means an empty pointer.

Definition 2 (label dictionary) The constructed

label lists are collected and stored in the memory.

Whenever a label is given, a corresponding label list

is retrieved and the count of its members is returned.

Due to its activity, the collection is named as label

dictionary, denoted Ldic.

As infrequent single-node trees are eliminated in

conventional approaches, the label lists which do not

confirm a given threshold δ, δ = σ * |D|, must be

pruned from Ldic, because the initial Ldic is analogous

to a set of all single-node trees of D.

Figure 1 shows an depicted example of how Ldic

and its label lists are constructed and managed from

the database D. For easy distinction between nodes

of different trees, we assign unique consecutive

indexes in pre-order traversal. The bodies of lists

decide the frequencies of corresponding labels. For

instance, the label A does not satisfy the given

minsup which is set ⅔ because it has only 1

member in the body of A-list.

Definition 3 (frequent label list) Given a label

list for l, l-list ∈ Ldic, let |l-list| be a number of its

members. l-list is said to be a frequent label list iff

it satisfies the following conditions: (1) |l-list| ≥ δ

(2) for each member, every parent index p in it, the

label of p, L(p), has been projected and has

L(p)-list. (3) |L(p) -list| ≥ δ.

T1 T2 T3

A

C

D B E

FG F

1

2

53 7

64 8

C

BD E

FF G

9

1210 14

1311 15

C

C D B E

B E

F G

F

16

2217 23 25

18 20

19 21

24

11

2,9,(16,17)2,9,(16,17)

3,10,223,10,22

5,12,(18,23)5,12,(18,23)

(6,8),(11,13),(19,24)(6,8),(11,13),(19,24)

A

C

D

G

B

F

E

4,15,214,15,21

7,4,(20,25)7,4,(20,25)

εT10 εT10

T11 T11

T12 T12

T13 T13

T12 T12

T15,7 T15,7

T12 T12

T20 T20

T29 T29

T214 T214

T29 T29

T210,12 T210,12

T29 T29

εT30,16 εT30,16

εT316 εT316

εT320 εT320

εT317,16 εT317,16

εT318,23 εT318,23

εT317,16 εT317,16

A-list

head part body part

(Figure 1) Original tree database and its label

dictionary Ldic

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

70 2009. 10

A label list is said to be projected from a frequent

label iff the first condition is satisfied. Since our

approach is inspired by the pattern growth

algorithms, the label lists whose projected labels do

not confirm the first condition cannot be further

grown. Even a label list is projected from a frequent

label, it is still not clear if the list is a frequent label

list or not, because of the structural uniqueness of a

label list which is one of the key factors in allowing

SEAMSON not to generate any subtrees.

The parent indexes in members should have

frequent labels in order the subtrees with size 2 to

be frequent, and this is checked by the second and

third condition of Definition 3. However, it rarely

happens that parent index also has frequent label. In

that case, such a parent index whose label is not

frequent can be switched to either one of its

ancestors which label is frequent, or the root,

because SEAMSON cares embedded subtrees. Some

means to manage parent indexes in members is

required to check the frequency of and to switch

them, which makes label lists be frequent.

3.2 CANDIDATE HASH TABLE

Before acquiring frequent label lists, the method

to make them must be provided, which is the

distinctive feature of SEAMSON and make it

differentiate from previous approaches. To this end,

the label lists whose projected labels do not satisfy

the condition (1) of the definition 3 are excluded

from Ldic (now, the current Ldic is denoted Ldic
f) and

form a special hash table named Candidate Hash

Table, TC, whose purpose is to determine if a given

node index has a frequent label or not. If its label is

found in the table, it means that the label is

infrequent because its label list is not in Ldic
f. The

parent indexes of members in Ldic
f are verified and

switched to fulfill the last two conditions of the

definition. TC is composed of node indexes, labels of

the nodes, and label lists, where keys are labels and

their values which are label lists are returned by a

hash function H(label). Note that the input of the

table is node indexes which are mapped to their

proper labels by L(n).

Theorem 1 It is infeasible that an identical label

list is included in both Ldic
f and TC.

Proof. Assume a label list, say l-list, exists in

both Ldic
f and TC. This situation directly creates

conflict; It is reasonable l-list has frequent label if it

is in Ldic
f. Hence, it is never excluded from Ldic

f,

which means there is no chance for the list to be in

TC. On the contrary, once l-list is in TC, it indicates

the label l didn't satisfy a given σ. The label list had

to be definitely pruned from Ldic. Therefore, any

label list generated from a label in L is contained in

either Ldic
f or TC.

It is easily determined by TC if the label of a

given parent index has projected as one of label lists

in Ldic
f, then, what about the switching in case the

label is in TC. As the required method we define the

following.

Definition 4 (closest frequent ancestor) Given an

arbitrary label list in Ldic
f
, any parent index p in its

members is required to traverse its ancestors if L(p)

is in TC. During the move toward the root, the

ancestor index of p is searched what is the first

ancestor whose label is not in TC. We call this

ancestor closest frequent ancestor of p, denoted Λp.

Let l1-list (∈ Ldic
f) is a current label list and

|l1-list| be m. Each member of its l1-list.b is required

to undertake the following. Let any parent node

index in members be p. Note that p’s nth ancestor is

notated by pn (p0 is p itself). (1) Each p of a

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

한국 인터넷 정보학회 (10권5호) 71

member is associated to its label by L(p). (2) The

obtained L(p) is given to TC. If L(p) is not found

between keys, p has frequent label. Thus, p becomes

the proper Λp, and the process is terminated.

Otherwise, p’s label is infrequent. (3) To uncover the

desired location of L(p), the index is computed by

H(L(p)). (4) According to H(L(p)), the value L(p)-list

is returned. (5) Since the value is L(p)-list.b, it

consists of several members. The node indexes in the

members correspond to those of p
1
. (6) As

backtracking, (1) to (4) is done against every p1 in the

value. (7) The p1 whose label is found as the key of

TC iteratively performs (3) through (6) until Λp
1
 is

found. For all m members the steps (1) to (7) are

performed to fill themselves with only closest frequent

ancestors. What if a proper Λp is not acquired until

end of backtracks? In such case, none of p's ancestors

including p itself have frequent labels. That means the

node index whose label is l1 has no parent node, and

therefore, it becomes the root. Hence, Λp is set by 0

to indicate that ‘it is the root position’.

The figure 2 shows TC constructed simultaneously

with Ldic
f (Here, Ldic

f is the same as Ldic on Figure 1,

except that it does not contain A-list and C-list has

been modified by the closest frequent ancestor.

A

key index value

1

node index
L(1)

0 T1 ε0 T1 ε
H(A)

1 T11 T1 0 T20 T2 0, 16 T3 ε0, 16 T3 εC-list 2,9,16,172,9,16,17

0 T10 T1

2 T12 T1

3 T13 T1

2 T12 T1

5, 7 T15, 7 T1

2 T12 T1

0 T20 T2

9 T29 T2

14 T214 T2

9 T29 T2

10,12 T210,12 T2

9 T29 T2

0, 16 T3 ε0, 16 T3 ε

16 T3 ε16 T3 ε

20 T3 ε20 T3 ε

16,17 T3 ε16,17 T3 ε

18,23 T3 ε18,23 T3 ε

16,17 T3 ε16,17 T3 ε

C-list

D-list

G-list

B-list

F-list

E-list

2,9,16,172,9,16,17

3,10,223,10,22

4,15,214,15,21

5,12,18,235,12,18,23

6,8,11,13,19,246,8,11,13,19,24

7,14,20,257,14,20,25

TC

Ldic
f

?0
L(0)

(Figure 2) Discovery and replacement of Λ1

3.3 LABEL LIST EXTENSION

The finally obtained Ldic
f
 contains all frequent

label lists, which implicitly indicates the projected

labels are all frequently occurred and every node

index is mapped by one of them. Then, what about

paths between nodes if the nodes are explicitly

linked? In such case, the paths could possibly be

frequent, however, that is not guaranteed because of

the fact that a path is a sequence of edges. Let an

edge e connect exactly two distinct nodes v1, v2

labeled by a and b, which is notated e = (v1, v2) =

(L(v1), L(v2)) = (a, b). If e wants to be a frequently

occurred edge, the labels a and b must be frequent

labels. Hence, if a path wants to be a frequently

appeared path, all edges forming the path should be

frequently occurred. When let a path be p, it is

composed of a finite number of edges; p = e1 e2…

em. The path can also be expressed with labels

because a path is a sequence of labels as shown on

the above equations. Therefore, all the labels should

be frequent in order the path to be frequent.

However, it is not guaranteed when edges between

nodes are explicitly unveiled from Ldic
f
, because only

nodes and labels were considered to build the initial

Ldic. During the read of label lists, edges are formed

by joining a symbolic node whose label is the

projected label and symbolic nodes of parent

indexes’ labels in its members. Unveiling edges

totally relies on every frequent label lists, because

the symbolic nodes of parent indexes' labels have

also their frequent label lists. The hidden paths

between label lists are discovered by extending the

node of a current label with the nodes of other label

lists.

Definition 5 (label list extension) Given Ldic
f, let

a current label list be l-list and p be one of parent

indexes in its members. For l-list, firstly a symbolic

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

72 2009. 10

node whose label is l is set and the node is prepared

to join with its parent. The second symbolic node is

set from the parent index p. Its label is easily

obtained by L(p) and the corresponding L(p)-list is

in Ldic
f due to the definition 3. Consequently, the

node labeled by l is joined to the node labeled by

L(p). We call this operation label list extension and

denote l ← L(p) where ‘←’ indicates the direction

of parent to child.

Note that the extension is performed with labels

not the node indexes. The node index is just used to

get label or its corresponding label list. A symbolic

node is created whenever a label requires it. The

fundamental method is actually to extend label. The

label list extension is committed to every label list in

Ldic
f. After completing the work of extension, the

labels in head parts are connected each other via

nodes. The structure of the result is a tree whose

root is labeled by /. This tree contains all of

potentially maximal frequent subtrees and thus is

named Potentially Maximal Pattern tree (PMP-tree in

short). The detailed is followed.

Two times of Ldic
f scans are required. First, only

head parts of label lists are scanned to determine

how many symbolic nodes are needed. This number

depends on |Ldic
f| since head part exists per label.

The settled number of nodes are created and related

by labels in head parts. During the first scan, the

nodes are fixed and they are never changed because

label list extension is performed on the basis of

those nodes and PMP-tree is also derived from them.

These nodes are called seeds of PMP-tree. Each seed

contains three fields; cnt field for edge frequency,

and two pointer fields: prt and suc for parent node

and successor node, respectively. The detailed roles

of fields will be explained in the paragraph for

second scanning.

Along with the determination of seeds, one table

is constructed with labels and seeds. This table

facilitates the traversal of PMP-tree by providing

location information of seeds. Once a label is given

to the table, its corresponding seed’s position in

PMP-tree is retrieved. Since the table searches nodes

based on labels, we name it Label Header Table, TL,

and it is built simultaneously with seeds. TL is

composed of two columns: label and seed# (location

of seed).

The storage size required for saving the table is

followed. Assuming a size of a single table record x

and |Ldic
f
| = M, the total required space is fixed at

xM because seeds are created from the labels of all

heads in Ldic
f. It has a storage complexity of Θ(x|L|)

time in the worst case, however, it is unusual that

every unique label for D is frequent. Therefore, the

actually necessary space to store TL is much smaller

than the worst case, because of M ≪ |L|.

After finishing the first scan, total seven seeds are

generated from the Ldic
f on Figure 2 and they are

related their labels in TL via the seed# column. The

current seeds have empty parents, empty successors,

and 0 counters. Since not yet performed the label list

extension, no relation is expected between seeds. To

process label list extension over the seeds, Ldic
f is

scanned for the second time and last time. During

this scanning period, the body parts in turn are

analyzed, which have been skipped at the first scan.

The parent indexes of each member are spliced with

the existing seeds by following steps: (1) Let a seed

of a current reading label list, l-list, be sl associated

with a label l in TL. (2) For a parent index p in a

member of body of l-list, obtain a label of p by

L(p). (3) According to Definition 3, the label L(p)

forms a record of TL and is associated with one of

seeds. (4) Look up the table TL to get the seed#

which corresponds to L(p); let the corresponding

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

한국 인터넷 정보학회 (10권5호) 73

seed be sL(p). (5) If sl has empty prt which means it

is not yet linked with any parent node, the seed sL(p)

is the firstly appeared its parent. Hence, the seed# of

sL(p) is stored in the prt of sl; this action directly

perform sl ← sL(p). Also, the cnt of sL(p) is

incremented by 1 because an edge between sl and

sL(p) has been formed and it occurred. The value of

cnt implies frequency of an edge which is formed

between a current seed and a parent seed. Instead of

incrementing the current seed’s cnt, we choose to

increment the parent seed’s cnt because the parent

seed is end point of an edge. Because making edge

is completed by the parent seed, the information of

edge frequency has to be kept in parent, which

means “child seed and I occurred together as many

as my cnt times”. Thus, we increment the edge

frequency in parent seed.

It is trivial work to link sl to sL(p) when prt of sl

is empty. However, what if prt of sl is already

preoccupied by another seed#, say sL(q)? There are

two cases depending on whether sL(p) = sL(q) or not,

and the step (5) in the previous paragraph is replaced

by the following: (5-1) If sL(p) ← sL(q), the fact has

to be taken into account that the seed sl has more

than one parents with different labels. To cope with

such situation, we add a successor at the end of the

seed sl, or at the last successor if sl already has

successors. Successor has exactly same structure as

that of seed. Without using successors one child can

have several parents and it causes the graph structure

which requires NP-complete subtree decomposition.

In case of that sl has successors, the values in all

prts of sl and its successors have to be compared

with the seed# of sL(q). If not found the same value,

sL(q) is another parent seed of sl, thus, a new

successor for sl is attached at the end of successors

and it is linked with sL(q). (5-2) In case of that sL(p)

is equal to the preoccupied prt value sL(q) or any one

of prt values in sl’s successors, cnt of sl or

corresponding successor is incremented by 1.

Because the edge of between sl and sL(p) has been

already made, the only work is to increase the

frequency; the already existing edge corresponds

either to sl ← sL(q) or to sl.suc ← sL(p) (6) The

procedures from step (2) to (5-2) is repeated until all

parent indexes in Ldic
f are considered.

Figure 3 illustrates both the table TL and the

derived PMP-tree from Figure 2. The currently

obtained PMP-tree is composed of many edges

which link between seeds or successors. Connecting

nodes in a tree implies the extension of tree. The

frequency of nodes is considered in PMP-tree,

however, the frequency of edges is not guaranteed.

Therefore, frequency of an edge has to be considered

to complete the PMP-tree. This is done by marking

the counts of edges in the field cnt of each seed or

successor. If s.cnt is less than a given threshold, s

and its entering edge are not frequent. Thus, both are

spliced out from a current PMP-tree. On the figure,

only the edges with bold lines are remained edges in

PMP-tree.

700G

600F

500E

400D

300C

200B

100/

seed # label

700G

600F

500E

400D

300C

200B

100/

seed # label
100100

300 100 3300 100 3

400 300 3400 300 3 300 1300 1

500 300 3500 300 3

200 300 3200 300 3

600 200 3600 200 3

500 1500 1

400 1400 1

700 400 1700 400 1

500 2500 2

prt cnt suc

G700

F600

E500

D400

C300

B200

/100

label seed #

G700

F600

E500

D400

C300

B200

/100

label seed #

(Figure 3) Final PMP-tree derived from Ldic
f

4. EXPERIMENTS

We performed some experiments to evaluate the

performance of SEAMSON algorithm using synthetic

datasets. All experiments were done on a 2.2GHz

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

74 2009. 10

AMD Athlon 64 3500+ PC with 1GB main memory,

running Windows XP operating system. All

algorithms were implemented in Java. The synthetic

datasets are generated by the tree generation program

whose underlying ideas are inspired by Termier [19]

and Zaki [12]. The generator constructs a set of trees,

D, based on some parameters supplied by a user, T:

the number of trees in D, L: the set of labels, f: the

maximum branching factor of a node, d: the

maximum depth of a tree, ρ: the random probability

of one node in the tree to generate children or not,

η: the average number of nodes in each tree in D.

We used the following default values for the

parameters: T = 10,000, L = 100, f = 5, and d = 5.

In the following experiments, we first evaluate the

scalability of our algorithm with varying minimum

support as well as the number of trees T, while other

parameters are fixed as: L = 100, f = 5, d = 5, ρ =

20%, η = 13.8. Second, we present the number

maximal frequent subtrees under different minsup.

As the last experiment, the memory usage of

SEAMSON is evaluated while minsup is 0.2% and

0.1%, where its characterized processes: constructing

Ldic, finding closest frequent ancestors, and deriving

PMP-tree, are especially evaluated for their memory

consumption. In the figures of experiments, both X-

and Y-axis are drawn on a logarithmic scale for the

convenience of observation.

100

101

102

103

10-410-310-210-1100101

R
un

ni
ng

 ti
m

e
(s

ec
)

Minimum Support (%)

T = 10000
T = 15000

(a) support vs. time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1⋅103 2⋅103 3⋅103 4⋅103 5⋅103 10⋅103 15⋅103

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Input Trees (T)

minsup = 0.2%
minsup = 0.15%
minsup = 0.1%

(b) input trees vs. time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10-410-310-210-1100101

N
um

be
r

of
 M

ax
im

al
 F

re
qu

en
t S

ub
tr

ee
s(

tr
ee

s)

Minimum Support(%)

T=10000
T=15000

(c) number of maximal frequent subtrees

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1⋅103 2⋅103 3⋅103 4⋅103 5⋅103 10⋅103 15⋅103

M
em

or
y

U
sa

ge
 (

M
B

)

Number of Trees in a Dataset (T)

Constructing L+dic
Finding cfa

Deriving PMP-tree

(d) memory usage per each process

(Figure 4) Scalability and memory consumption

of SEAMSON

From Figure 4(a), we can find that the running

time increases when T increases, however, both

running times are rarely affected by the decrease of

the minimum support. With minsup becoming

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

한국 인터넷 정보학회 (10권5호) 75

smaller, there is no big difference in execution time

for both datasets. This is because SEAMSON relies

on the number of labels not the number of nodes.

Thus, it is very efficient for datasets with varying

and growing tree sizes. Then, Figure 4(b) shows the

scalability with size of dataset ― the number of

input trees. The parameter T varies from 1,000 to

15,000 with ρ = 20. We evaluate three different

minsup, 0.2%, 0.15%, and 0.1%. The corresponding

graphs show considerable similarity which slowly

increases until T = 11,000 and suddenly goes up

between T = 11,000 and T = 13,000. Afterwards, the

graphs are started to rapidly deteriorate. Our

understanding of this phenomenon is that the sizes of

Ldic
f and its label lists are maximized with 100

distinct node labels when the number of input trees

reaches at 12,000 and 13,000.

In Figure 4(c) two graphs have analogous patterns

in a number of maximal frequent subtrees; the

number of maximal frequent subtrees slowly grows

before the rapid rise where lies between minsup =

0.3 and minsup = 0.2. Afterwards, the number drops

off and keeps in steady state. The characteristics

stems from the limited number of labels and its

random distribution for datasets generation.

Figure 4(d) shows the trends of memory usage of

the three processes. In the memory usage, the

process for constructing Ldic consumes the most

amount of memory along with the growing number

of trees. On the contrary, the process for PMP-tree

consumes almost stabilized amount of memory

during the experiments ranged from T = 10,000 to T

= 15,000. Because the former is responsible for

scanning an original tree dataset and converting them

into label projected dataset, the required memory

size is getting larger along with the increase of trees

in D. The memory usage of the process for finding

closest frequent ancestors also increases when T

grows; however, its slope is much smooth and gentle

compared to that of the first process. It requires less

memory because it manages the data in the already

generated structure, Ldic. At the end, the process for

deriving PMP-tree consumes less than 5MB during

the experiments. The goal of this process is to derive

maximal frequent subtrees from the Ldic
f
.

The following Figure 5 evaluates the running time

of SEAMSON in comparison with PathJoin[15] and

CMTreeMiner[7]. The parameters for the dataset are:

T = 12,000, L = 100, f = 5, and d = 5, η = 20, and

minsups from 100% to 0.0001%. PathJoin shows the

dramatic increase of time consumption when the

minsup decreases. Although it is fast for the

minimum values around 100%, it becomes obvious

that PathJoin suffers from severe growth of

computation time from less than 70% while the other

two do not. It stems from the post-processing

pruning which is the way PathJoin mines maximal

frequent subtrees. After obtaining all frequent

subtrees, PathJoin eliminates those that are not

maximal. Thus, the number of frequent subtrees is

getting bigger as the minsup is getting smaller, and

this is the reason why PathJoin requires the worst

time consumption compared with SEAMSON and

CMTreeMiner. The algorithm CMTreeMiner shows

better running time than PathJoin. However, it still

gradually increases along with the decrease of the

minimum value and requires more time consumption

than SEAMSON. This is because of the large

amount of candidates generated by apriori-based

techniques. Compared to the other two, SEAMSON

shows a different trend of time consumption. In spite

of decreasing minimum support, it is rarely affected

by it. This means that the running time of

SEAMSON has fairly stable condition over any

minimum support.

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

76 2009. 10

10-1

100

101

102

103

10-410-310-210-1100101102

R
un

ni
ng

 ti
m

e
(s

ec
)

Minimum Support (%)

SEAMSON
CMTreeMiner

PathJoin

(Figure 5) Running time comparison of the three

algorithms

5. CONCLUSION

We presented a new concept of label-projection

and simple lists and labels based approach to extract

maximal frequent subtrees from a database of trees.

Unlike the traditional approaches, the proposed

method did not perform any subtree generation. To

this end, we devised both a special database Ldic

which adopted the concept of label-projection, and

its basic unit, label list, which preserved all

necessary information to discover maximal frequent

subtrees.

The beneficial effect of our method is that it not

only got rid of the process for infrequent tree

pruning, but also eliminated totally the problem of

candidate subtrees generation. Hence, we

significantly improved the whole mining process. To

the best of our knowledge, the proposed method in

this paper is the first algorithm that directly

discovers maximal frequent subtrees without any

subtree generation.

References

[1] R. Praveen, M. Bongki, "Prix: Indexing and

Querying XML Using Prüfer Sequences," Proc.

of IEEE Int’l Conf. on Data Mining, pp.

288-299, 2004.

[2] L. I. Rusu, W. Rahayu, T. Taniar, "Mining

Changes from Versions of Dynamic XML

Documents," Proc. of Int’l Conf. on Knowledge

Discovery from XML Documents, LNCS vol.

3915, pp. 3-12, 2006.

[3] S. L. T. Adali, M. Magdon-Ismail, "Optimal

Link Bombs are Uncordinated," Proc. of the 1st

Workshop on Adversarial Information Retrieval

on the Web, pp. 487-499, 1994.

[4] S. Zhang, J. T. L. Wang, "Mining Frequent

Agreement Subtrees in Phylogenetic Databases,"

Proc. of the 6th SIAM Int’l Conf. on Data

Mining, pp. 222-233, 2006.

[5] J. Cui, J. Kim, D. Maggiorini, K. Boussetta, M.

Gerla, "Aggregated Multicast―A Comparative

Study," Cluster Computing, 8(1), pp. 15-26,

2005.

[6] Y. Chi, S. Nijssen, R. R. Maggiorini, J. N. Kok,

"Frequent Subtree Mining―An Overvire,"

Fundamental Informaticae, 66(1-2), pp. 161-198,

2005.

[7] Y. Chi, Y. Xia, Y. Yang, R. R. Muntz, "Mining

Closed and Maximal Frequent Subtrees from

Databases of Labeled Rooted Trees," Proc. of the

16th Int’l Conf. on Scientific and Statistical

Database Management, pp. 11-20, 2004.

[8] R. Agrawal, R. Srikant, "Fast Algorithms for

Mining Association Rules," Proc. of the 20th Int’l

Conf. on Very Large Databases, pp. 487-499,

1994.

[9] J. Han, J. Pei, Y. Yin, "Mining Frequent Pattern

without Candidate Generation," Proc. of ACM

SIGMOD Int’l Conf. on Management of Data,

pp. 1-12, 2000.

[10] K. Wang, H. Liu, "Schema Discovery for

Semistructured Data," Proc. of the 3rd Int’l

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

한국 인터넷 정보학회 (10권5호) 77

Conf. on Knowledge Discovery and Data

Mining, pp. 271-274, 1997.

[11] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H.

Satamoto, S. Arikawa, "Efficient Substructure

Discovery from Large Semi-structured Data,"

Proc. of the 2nd SIAM Int’l Conf. on Data

Mining, pp. 158-174, 2002.

[12] M. J. Zaki, "Efficiently Mining Frequent Trees

in a Forest: Algorithms and Applications,"

IEEE Transactions on Knowledge and Data

Engineering, 17(8), pp. 1021-1035, 2005.

[13] Y. Chi, Y. Yang, R. R. Muntz, "Canonical

Forms for Labeled Trees and Their

Applications in Frequent Subtree Mining,"

Knowledge and Information Systems, 8(2), pp.

203-234, 2005.

[14] C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang,

B. Shi, "Efficient Pattern-growth Methods for

Frequent Tree Pattern Mining," Proc. of the 8
th

Pacific-Asia Conf. on Knowledge Discovery and

Data Mining, LNAI vol.3056, pp. 441-451,

2004.

[15] Y. Xiao, J.-F. Yao, Z. Li, M. H. Dunham,

"Efficient Data Mining for Maximal Frequent

Subtrees," Proc. of IEEE Int’l Conf. on Data

Mining, pp. 379-386, 2003.

[16] Y. Chi, Y. Xia, Y. Yang, R. R. Muntz, "Mining

Closed and Maximal Frequent Subtrees from

Databases of Labeled Rooted Trees," IEEE

Transactions on Knowledge and Data

Engineering, 17(3), pp. 190-202, 2005.

[17] J. Paik, U. M. Kim, "A Simple yet Efficient

Approach for Maximal Frequent Subtrees

Extraction from a Collection of XML

Documents," Proc. of the 7
th
 Int’l Conf. on

Web Information Systems Engineering, pp.

94-103, 2006.

[18] J. Paik, J. Lee, J. Nam, U. M. Kim, "Mining

Maximally Common Substructures from XML

Trees with Lists-based Pattern-growth Method,"

Proc. of IEEE Int’l Conf. on Computational

Intelligence and Security, pp. 209-213, 2007.

[19] A. Termier, M.-C. Rousset, M. Sebag,

"Treefinder: A First Step towards XML Data

Mining," Proc. of IEEE Int’l Conf. on Data

Mining, pp. 450-457, 2002.

라벨 트리 데이터의 빈번하게 발생하는 정보 추출

78 2009. 10

◐ 자 소 개 ◑

백 주 련
1997년 성균 학교 정보공학과 졸업(학사)

2005년 성균 학교 학원 컴퓨터공학과 졸업(석사)

2008년 성균 학교 학원 컴퓨터공학과 졸업(박사)

2008 ～ 재 성균 학교 정보통신공학부 연구교수

심분야 : 트리 마이닝, 지식정보검색, 유사성 검색.

E-mail : wise96@ece.skku.ac.kr

남 정
1997년 성균 학교 정보공학과 졸업(학사)

2002년 Univ. of Louisiana at Lafayette 컴퓨터과학과 졸업(석사)

2006년 성균 학교 학원 컴퓨터공학과 졸업(박사)

2007 ～ 재 건국 학교 컴퓨터응용과학부 조교수

심분야 : 암호학, 컴퓨터보안.

E-mail : jhnam@kku.ac.kr

안 성
1985년 서울 학교 기계설계학과 졸업(학사)

1987년 한국과학기술원 생산공학과 졸업(석사)

2004년 Univ. Stuttgart 기계공학과 졸업(박사)

1985~1990년 성사 가 연구소 주임연구원

1990~2004년 Fraunhofer IPA(독) 연구원

2005 ～ 재 성균 학교 정보통신공학부 부교수

심분야 : 3D Information Processing.

E-mail : finger@skku.edu

김 응 모
1981년 성균 학교 수학과 졸업(학사)

1986년 Old Dominion Univ. 컴퓨터과학과 졸업(석사)

1990년 Northwestern Univ. 컴퓨터과학과 졸업(박사)

재 성균 학교 정보통신공학부 교수

심분야 : 데이터마이닝, 데이터웨어하우징. 데이터베이스보안

E-mail : umkim@ece.skku.ac.kr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

