
한국 인터넷 정보학회 (10권4호) 199

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을
한 응형 버퍼튜닝기법

An Adaptive Buffer Tuning Mechanism for striped transport layer
connection on multi-homed mobile host

 라 즈* 허 의 남**

Faraz Idris Khan Eui-Nam Huh

요 약

최근 무선네트워크 기술은 이동 응용 로그램을 해 이종통신망 연결패스 상에서 병렬로 스트라이핑 데이터 기술을 이용
해 고속 데이터를 달을 가능 한다 [2]. 통 으로 역폭지연 로덕트(BDP) 기반에서 고속 송은 송신자 측에서 다 TCP

소켓의 튜닝을 요구한다. 더욱이, 메모리와 네트워크 요구의 균형을 유지하는 ATBT같은 기술은 유선기반의 단일 소켓상에서
하나의 로우만 가정하여 설계되었다. 그러므로 본 논문은 여러 무선 패스를 경유하는 이종 무선네트워크 상에서 고속 송을
가능 하는 스트라이핑 송기술에 합한 버퍼튜닝 기술을 제안한다. 제안 기술은 이동성, 링크손실, 역폭변동성 등의 특징
을 지닌 무선 멀티홈 모바일 호스트상에서 작동하는 송계층에서의 자원 리기술이다. 실험을 통하여 유선기반의 ATBT를 본
환경에 용한 것보다 메모리, 평균 송량에 있어 제안 기술의 성능이 우수하다.

Abstract

Recent advancements in wireless networks have enabled support for mobile applications to transfer data over heterogeneous

wireless paths in parallel using data striping technique [2]. Traditionally, high performance data transfer requires tuning of multiple

TCP sockets, at sender’s end, based on bandwidth delay product (BDP). Moreover, traditional techniques like Automatic TCP

Buffer Tuning (ATBT), which balance memory and fulfill network demand, is designed for wired infrastructure assuming single flow

on a single socket. Hence, in this paper we propose a buffer tuning technique at senders end designed to ensure high

performance data transfer by striping data at transport layer across heterogeneous wireless paths. Our mechanism has the

capability to become a resource management system for transport layer connections running on multi-homed mobile host

supporting features for wireless link i.e. mobility, bandwidth fluctuations, link level losses. We show that our proposed mechanism

performs better than ATBT, in efficiently utilizing memory and achieving aggregate throughput.

☞ keyword : socket buffer tuning, resource management, TCP, flow control, data stripping 소켓버퍼튜닝, 자원 리, TCP, 흐름
제어, 스트라이핑

1. Introduction

Efforts to provide services to the astronomical

mobile users led to the explosion of huge number of

wireless access technologies. Each of these

* 회 원 : 경희 학교 컴퓨터공학과

faraz@khu.ac.kr

** 종신회원 : 경희 학교 컴퓨터공학과 교수

johnhuh@khu.ac.kr(Corresponding author)

[2008/10/07 투고 - 2008/10/10 심사 - 2008/12/21 심사완료]

technologies exhibit unique and diverse network

characteristics of coverage range and data rate. Thus,

today there are various options available for access

to a mobile user to choose from, ranging from

Globstar for satellite access, General Packet Radio

Service (GPRS), Wideband Code Division Multiple

Access (WCDMA), Enhanced Data Rate for GSM

Evolution (EDGE) for wide area access and IEEE

802.11 or HyperLAN for local area network access.

Moreover, with the emergence of such diverse access

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

200 2009. 8

technologies an effort is made by network research

community to utilize their coexistence to provide the

best of the services to the mobile user.

The first ever proposal of a technology that

realizes, the utilization of different access networks,

is that of vertical handoff [1] providing ubiquity of

service by handing off to a different network. It

requires the usage of a single wireless interface by

the application at a time. Lately, simultaneous usage

of diverse multiple wireless interfaces to achieve

high performance by aggregating bandwidth along

different paths, is considered, as in [2]. In such

scenarios, where high performance is required along

diverse paths, a seemingly better solution of

application layer stripping along different TCP

sockets sharing same path, performs abjectly as

shown in [2]. Hence, the network research

community has come up with proposals to strip data

at transport layer which lead to the stream of

protocols such as parallel TCP (pTCP) [2], multiple

TCP (mTCP) [3], Dynamic Multipath TCP

(DMTCP) [4], Aggregate Bandwith Multihoming

Support (AMS) [5], which are shown to perform

well in case of diverse wireless path scenario. In all

such protocols, the congestion control algorithm runs

independently along multiple active paths in order to

strip data according to the present network condition

estimated by congestion window. It is important to

note that the features of these protocols are inherited

from TCP. In other words, these protocols are

advance form of TCP, supporting striping.

The potential applications of the above mentioned

protocols are distributed computing applications

requiring high volume data transfer over high speed

wireless connections such as 3G High Speed Uplink

Access (HSUPA) or High Speed Downlink Access

(HSDPA). For instance Mobile Data Grid, enabling

heterogeneous grid resource, datawarehouse, access

for huge amount of data over wireless, is a specific

example of such distributed computing application.

As TCP performs poorly across high capacity wide

area network and requires proper tuning, proposals

such as [6, 7] can be found whose ultimate target is

to enable high performance data transfer. Moreover,

in order to prevent tedious system tuning by the

application developer, Work Around Daemon (WAD)

[8] has been proposed which monitors network state

and automatically configures buffer size for TCP

connections at the host. All of such works are

inspired by TCP performance degradation on high

capacity wired infrastructure. And, the techniques

employed to tune the connections considers

congestion window as the estimate for the data in

flight. However, in case of wireless connection

congestion window is not a correct estimate,

especially if the link is severely prone to errors. This

is due to TCP’s in ability to distinguish congestion

losses from link level losses [9]. And, future

generation mobile handset will encounter handoff both

horizontal and vertical which requires notification

from lower layers in order to enhance the

performance of TCP. Also, as the mobile handsets are

devices whose resources are to be utilized efficiently,

therefore, such needs call for a resource management

system which manages the TCP connections at the

host efficiently utilizing the memory, as well as, by

monitoring wireless link state.

ATBT [10] is the technique that balances memory

usage, at the same time, meeting network target for

multiple single flow TCP connections. With the

advent of major TCP connection striped along

diverse paths, a single socket will be logically shared

by the micro flows. Hence, ATBT which assumes a

single flow on a socket will perform poorly.

Partially, the poor performance will be contributed

due to in correct estimate of network target through

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

한국 인터넷 정보학회 (10권4호) 201

congestion window. Also, often at the host there are

various small connections not utilizing the assigned

buffer to the fullest. Hence, large connections such

as striped connections requiring extra buffer for

achieving high throughput can appropriate their space

by applying greedy approach. On the contrary,

during connection life time when the striped

connection does not require extra buffer, it can

allocate extra space to the other connections, running

at the host, in proportion to their bandwidth.

Therefore, in this paper we propose a dynamic

buffer tuning technique using cross layer

communication for monitoring network state applicable

to striped TCP connection along diverse wireless paths.

The contribution of this work is two fold

• We propose a technique for tuning the buffer

size of the connection by applying a controller

often used in control theory to regulate the

sizing process

• We set the network demand for the controller

to tune the buffer; by using link layer

information regarding dynamic changes in

bandwidth and by monitoring the buffer

occupancy of all the connections running at

multihomed mobile host

The rest of the paper is organized follows: Section

2 discusses related work in the direction of buffer

tuning. Section 3 presents proposed system and

discusses the details of tuning technique. Section 4

presents the simulation results. Section 5 concludes

the paper with the discussion of future directions.

2. Related Work

2.1 Buffer Tuning Techniques

The advent of buffer tuning techniques arose with

the need of improving the performance of the

network applications on a high performance

networks. Often the degradation of performance is

experienced by the distributed code due to inability

of TCP to open up its congestion window over

WAN. In order to solve the problem, research

community has come up with various buffer tuning

techniques to avoid performance degradation [8]. In

which the basic idea of tuning is to fill the BDP of

the network path, the most important performance

parameter in case of bulk data transfer.

The tuning mechanism in literature is classified as

manual and automatic tuning mechanism. While,

manual tuning is a tedious work leaving it to be a

non-optimal solution.

ATBT in [10] is purely a sender – based

approach where the sender uses TCP packet header

information and timestamp to estimate the bandwidth

delay product of the network which is used to resize

the buffer, consequently leading to large sender

window.

In contrast to ATBT, Dynamic Right Sizing

(DRS) [11] is a receiver based approach, but like

ATBT, it estimates the bandwidth delay product and

the congestion control state of the sender using TCP

packet header information and timestamps. It then

advertises the window large enough that the sender

is not flow window limited.

Linux auto-tuning is basically a memory

management technique in stable Linux version 2.4.

The buffer size is increased and decreased on the

basis of available system memory and available

socket buffer space. Unlike above mentioned

mechanisms, bandwidth delay product is not

estimated in this technique.

There are other techniques which performs the

same task as manual tuning by running a daemon

[8]. It gathers the network information of the hosts

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

202 2009. 8

among which the connections are to be tuned and

saves it in a database. Host then lookup this

information while opening the connection.

All, of the above mentioned schemes are

conventional buffer sizing mechanism. They consider

the scenario where we have a multiple single flow

TCP connections running in a system and only high

capacity wired network features are monitored. We

will discuss, working of ATBT scheme as, it is

closest to our work of efficiently utilizing memory

with network target, with the detail critical analysis,

in the following subsection

2.2. Automatic TCP Buffer Tuning

Algorithm

As mentioned before that ATBT algorithm is a

sender based approach which regulates the send

buffer dynamics. The buffer size at any point in time

is configured on the basis of three algorithms which

are as follows

• First algorithm determines the target buffer

size on the basis of network target

• Second algorithm attempts to balance memory

usage

• Third algorithm calculates the fair share of

memory for a single connection which acts as

a hard limit preventing excess memory usage

It is necessary to discuss the variables used by the

algorithm to calculate the optimal buffer size.

AUTO_SND_THRESH A constant which actually

sets the memory threshold set by the system.

sb_net_target A variable that sets the target buffer

size according to cwnd as it consider it to be true

estimate of bandwidth delay product.

hiwat_fair_share A variable that holds the fair

share of the memory calculated using max-min fair

share algorithm for a single TCP connection.

sb_mem_target A variable that suggests a send

socket buffer size by taking the minimum of

sb_net_target and hiwat_fair_share.

The working of ATBT algorithm is shown in

figure 1, where as the memory balancing algorithm

is shown in figure 2.

1: Initialize sb_net_target = 2 * cwnd

2: Initialize hiwat_fair_share = calculateFairShare()

3: sb_mem_target = min(sb_net_target, hiwat_fair_share)

(Figure 1) ATBT Algorithm

The memory balancing algorithm runs twice in a

second. At the same time, fairness is achieved by

employing max-min fair share algorithm. In the

second iteration the left over memory is divided

equally among the large connections which require

more memory.

1: Initialize sum = 0; sum1 = 0

2: for each connection I

3: if (_ _ arg isb net t et < _ _ ih iw a t fa ir sh a re)

4: sum++ ; M = M + _ _ arg is b n e t t e t
5: else
6: sum1++
7: end if

8: end for

9: if _ _M AUTO SND THRESH≥

10: for each connection i

11: If (_ _ arg isb net t et < _ _ ihiwat fair share)

12:
_ __ _ =

1i
AUTO SND THRESHhiwat fair share

sum sum+

13: end if
14: end for

15: else if _ _M AUTO SND THRESH<
16: for each connection i

17: If (_ _ arg isb net t et > _ _ ihiwat fair share)

18:
_ __ _ =

1i
AUTO SND THRESH Mhiwat fair share

sum
−

19: end if
20: end for

21: End if

(Figure 2) Memory Balancing Algorithm

One of the obvious problems is that it is very rare

that the large connections will have the same

demand for memory. Thus, throughput of a

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

한국 인터넷 정보학회 (10권4호) 203

AvgBuffOccup A variable maintained for a single

connection by the agent is

calculated using EWMA (Exponential
Weighted Moving Average) of

BuffOccup variable. The goal is to

estimate the buffer occupancy

during the lifetime of the TCP

connection.

BuffOccup A monitoring variable that contains the

current value of buffer occupancy of a

single TCP connection.

Dev A variable maintained to calculate the

current deviation of BuffOccup from

AvgBuffOccup

AvgDev A variable maintained by the agent for

a single connection calculated using

EWMA of Dev. The concept behind

connection requiring more memory might be

hindered as the excess share given to it in the

second iteration might not be sufficient. If, in the

second run, excess memory is assigned proportional

to the BDP demand rather than dividing equally,

large connections perform better than before.

At the same time, in case of wireless networks,

the system might become unstable due to high

frequency of congestion window (cwnd) oscillations

or in correct estimate of bandwidth due to its

dependency on probing interval to set sb_net_target.

Moreover, in correct estimation might also result due

to shrinkage of cwnd occurring because of link level

losses, common in wireless environment, as

mentioned in the introduction. Hence, we say that

cwnd might not be an efficient estimate of BDP for

a TCP connection running on wireless.

3. Proposed System

The basic assumption in our system is, existence

of bottleneck at the gateway connecting the wired

infrastructure and the wireless link. As a result, the

performance of the TCP connections is dependent,

on the dynamics of bandwidth available at the

gateway. Our design, considers the constraint

imposed by the system on memory usage, by

defining a threshold under which all TCP

connections can operate. Likewise, same kind of

threshold on memory is used in [10] in order to

avoid the exhaustion of mbuf clusters in the system.

In figure 3, we show the flow of our system. The

functionality of our design rests on the availability of

memory space from the connections not utilizing

assigned space to its maximum. And, regulation of

buffer in our system is carried out by PID controller

which suggests corrective output, which is analyzed

with the available memory space, accordingly

applied to the buffer. The feedback for the controller

is the assigned buffer size. In simple words, the

controller is managing the buffer size according to

the dynamics of the available space in the system. In

this section, we will define and describe the basic

elements of our system.

(Figure 3) Flow of dynamic buffer size allocation

for striped connection

3.1. Monitoring Agent

The monitoring agent is responsible for

monitoring multiple TCP connections and

maintaining variables related to them. The variables

are updated after certain interval of time. For each

TCP connection following variables are monitored.

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

204 2009. 8

maintaining such variable is to estimate

the maximum deviation from the

AvgBuffOccup by giving weight to the

latest observation of Dev.

AssignedBuff
Size

A variable containing the current buffer

allocation for a single connection

proportion A variable that is used by the

resource manager, gives the proportion

of connection estimated throughput over

aggregate throughput demand of all the

connections at the host

On the global level we maintain two variables for

the whole system.

AggSpace A global variable that is maintained to
estimate the overall unused space based on
the estimation of monitoring variables

It is necessary to describe certain conventions that

we have used in the algorithms that will be

described in the subsections of this section. We

represent current time with the variable t. Then the

value of any variable Var, for a connection

represented by i at time t, is then represented as

itVar .

Figure 4 shows the algorithm running in the

monitoring agent. The bandwidth changes are

gathered using cross layer communication i.e. Radio

Network Feedback in case of 3G as used in [15] and

in case of IEEE 802.11 WLAN as monitored by

MAC layer, wireless link is assumed to be

bottleneck. These changes will be used to calculate

BDP along a certain path. Thus, our system does

not use cwnd to estimate the network demand.α and

β are smoothing factors for EWMA and weights

for the current observation. In case of our case, in

order to give enough weight to historical

observations the values choosen for α andβ is 0.3.

1: for each connection i

2: 1(1)i t it itAvgBuffOccup BuffOccup AvgBuffOccupα α −= × + − ×

3: it it itDev BufferOccup AvgBuffOccup= −

4: (1)i t i t i tA vgD ev D ev A vgD evβ β= × + − ×

5: ()it it it itAvailableSpace AssignedBuffSize AvgBuffOccup AvgDev= − +

6: t t itAggSpace AggSpace AvailableSpace= +

7: it itAggregateBandw idth Bandw idth+ =
8: end for
9:for each connection i

10:
it

i
it

Bandwidthproportion
AggregateBandwidth

=

11:end for

(Figure 4) Monitoring Agent Algorithm

3.2. Resource Manager

It is responsible for allocating extra memory space

to adjust the assigned buffer size according to the

current available memory space and the network

memory demands. In brief, it consults the controller,

running PID algorithm to regulate the assigned

buffer for striped connection. Primarily, the PID

(proportional integral derivative) controller is used in

control engineering to control the measurable process

variable in a factory by a constant feedback from the

process. Algorithm running in the controller, then

suggests a corrective output in order to bring the

measurable process variable close to the reference

point, set in the algorithm.

In network engineering realm, PID algorithm is

often seen to be used in AQM (Active Queue

Management) to manage the length of an outbound

queue in a router by selectively dropping the packets

to bias the behavior and performance of connections

transiting the router during times of congestion [13].

During the life time of the connections there can

be two scenarios: high network demand, low

network demand such that the assigned buffer is in

excess. In case of first scenario, first of all the

threshold of the PID algorithm is set to the current

network demand that is to be met. Then the

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

한국 인터넷 정보학회 (10권4호) 205

available space is obtained from the monitoring

agent. Figure 5 shows the algorithm for resource

allocation.

1: Execute ()tSetThresholdPID BandwithDemand

2: Initialize tAvailableSpace AggSpace=

3: Initialize _ ()toutput PID output AssignedBuffSize=

4: if 0output AvailabeSpace− <

5: 1t tAssignedBuffSize AssignedBuffSize AvailableSpace+ = +

6: elseif 0o u t p u t A v a i l a b e S p a c e− ≥

7: 1t tAssignedBuffSize AssignedBuffSize output+ = +
8: end if
9: for each connection i

10: 1 1(_)it it iAssignedBuffSize Threshold Mem AssignedBuffSize proportion+ += − ×

11: 1()itAllocateBuffSize AssignedBuffSize +

12: end for

13: Execute 1()tAllocateBuffSize AssignedBuffSize +

(Figure 5) Resource allocation algorithm case 1

PID algorithm suggests the corrective action that

is necessary to be taken by the system in order to

meet the demand of the network that is set. But, as

the system is constrained by system memory, the

corrective action at each cycle suggested for the

assigned buffer of the striped connection cannot be

as such directly applied. As a result, the output is

compared with the available space at the moment

from the already running connections. The allocation

is suggested to be applied directly if there is enough

available space. The additional memory is allocated

according to the available space at the present cycle.

In the end, the remaining space after the allocation

of memory to the striped connection is proportionally

re-assigned to other remaining connections.

In case of second scenario, at the end of step 4,

the new buffer size will be calculated and assigned,

as a result at step10; extra memory is proportionally

allocated to the remaining TCP connections in

proportion to estimated bandwidth demands from the

network. At the same time, single transport

connections can also estimate BDP (Bandwidth

Delay Product) not necessarily on the basis of cwnd

as in ATBT.

PID algorithm as shown in figure 6 generates

corrective out put on the basis of three parameters

• Correction suggested in proportion to the error

• Aggregated error accumulated over a certain

period of time

• Error difference between the present and the

last error, thus giving the rate of error in

feedback

Each of these parameters are multiplied by tunable

constants pk , ik , dk and then added together to

generate the output for the controller. There are

various sophisticated mathematical mechanisms to

tune these constants. This is left as our future work.

For this paper we have selected the constants which

ensure stability of PID in most of the cases which

are 0.05, 0.01, and 0.04 respectively. Threshold is

set as in ATBT i.e. 2 BDP× . For a striped,

connection bandwidth demand is aggregated over all

the micro flows.

1: procedure ()tSetThresholdPID BandwithDemand
2: 2 * *Thresho ld Bandw id thD emand RTT=
3: end procedure

4: procedure _ ()tPID output AssignedBuffSize

5: _t tError Threshold PID AssignedBuffSize= −

6: 1
1

()
t

p t i i d t t
i

o u tp u t k E rro r k E rror k E rro r E rro r −
=

= × + × + × −∑

7: return output
8:end procedure

(Figure 6) PID algorithm

4. Experiment

The first subsection presents the network topology

used for the simulation. In the second subsection, the

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

206 2009. 8

simulation scenarios are discussed along with their

results.

4.1. Network Topology

In this section, we present the topology used for

our simulation. A mobile host (MH) uses transport

layer striped connection, collectively, to transfer a

file of size 10MB to a fixed host (FH) using FTP

application. The data is striped along 3 wireless links

(a) MH – R0, with data rate of 11Mbps and

propagation delay of 10ms in case of WLAN,

where R0 is the access point or router for the

link

(b) MH – R1, with data rate of 2Mbps and

propagation delay of 120ms in case of GEO

satellite network, where R1 is the access point

or router for the link

(c) MH – R2, with data rate of 7Mbps and

propagation delay of 70ms in case of 3G

HSUPA (high speed uplink access), where R2

is the access point or router for the link

In figure 7, flows 1 3...f f are the micro flows of

a major TCP connection supporting transport layer

stripping. As our mechanism is independent of the

transport protocol used, for our simulation we ran

TCP-SACK at micro flow level. Besides micro

flows, there are other TCP flows, 4 8...f f , running

on a mobile host which will vary according to the

simulation scenarios discussed later. To simulate the

background internet traffic, we ran 2 TCP flows and

2 UDP flows,f9 … f12, originating from sources

1... 4n n with the ultimate destinations 5... 8n n

respectively. The access routers are connected with

the background internet routers 3 4 5, ,R R R with

100Mbps data rate and 30ms propagation delay links

connecting these routers. Ultimately, the backbone

routers are connected to the gateway 6R which is

connected to FH with a link of 100Mbps data rate

and 10ms propagation delay. Also, destination nodes

for background internet flows are connected with

6R .

(Figure 7) Simulation topology

The entire simulation is carried out in ns-2 [14].

We have implemented our own module for

monitoring the connections and maintaining global

variables for entire system, as well as, per

connection variables. Besides the monitoring module,

a memory allocation agent is implemented which

communicates with TCP, FTP application and

assigns buffer size according to our proposed

mechanism.

4.2. Simulation Results

We consider two scenarios for our experiment.

For the first scenario, the performance is analyzed by

ensuring more than enough available memory for the

connections on the host by setting high memory

threshold. In contrast, for the second scenario, we

scrutinize performance when a host is constrained on

available memory, by setting low memory threshold

for the connections. For each scenario, we varied the

single flow connections to eight on a mobile host, in

order to prove the scalability of our proposed

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

한국 인터넷 정보학회 (10권4호) 207

mechanism.

The duration of simulation is 400 seconds. And,

the single flows start after 10 seconds from the

beginning of simulation. The configuration for the

simulation of two scenarios is summarized in Table

1.

(Table 1) system configuration

Memory
Threshold
(Mbytes)

File Size
(Mbytes)

Default
Socket

Buffer Size
(Kbytes)

Maximum
Payload

per Packet
(Bytes)

High
Memory
Scenario

100 10 128 1460

Low
Memory
Scenario

2 10 128 1460

The performance is analyzed by observing the

aggregate throughput of the striped connections both,

at sender and receiver end, after every 10 seconds.

We varied the bandwidth after 50 seconds, in order

to simulate bandwidth fluctuations. At the same

time, the buffer is monitored after 20 seconds. The

results are discussed in the following subsections.

4.2.1 High Memory Scenario

Figure 8 and 9, respectively, shows the results at

sender and receiver end for 3 micro flows

constituting major stripped connection and 1 single

flow, for an aggregate of 4 connections in the

system. It is blatant, that our proposed mechanism

simply out class ATBT mechanism in terms of

enabling connections to open up their window to

achieve maximum throughput. This trend is

observable at both ends. The sender appropriated

space from the 4th connection and maximized its

sending throughput by transferring more data at a

time. The bad performance of the connection under

ATBT is expected, due to estimation of BDP on the

basis of congestion window and its unnecessary cut

down due to link level losses.

0

2

4

6

8

10

12

11 31 71 11
1
15
1
19
1
23
1
27
1
31
1
35
1
39
1

Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

 ATBT

Proposed
Mechanism

(Figure 8) Receiver side throughput for four

connections

0

5

10

15

20

25

30

11 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

ATBT

Proposed
Mechanism

(Figure 9) Sender side throughput for four

connections

Likewise, the same behavior is observed even if

the number of single flow connections is increased

to an aggregate of 8 connections running at the host.

Figure 10 and 11 shows the sender and receiver

perceived aggregate throughput. The throughput

achieved is lowered slightly which is due to high

number of connections sharing common pool of

memory. In addition, increased congestion in the

network also contributed to lower aggregate

throughput at the receiver.

Figure 12 shows the buffer size of the striped

connection socket. The size of the buffer allocation

remains higher than the allocation by ATBT. At the

same time, memory constraint imposed by the

system is preserved. The buffer allocations in case of

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

208 2009. 8

first scenario, for both ATBT and proposed

mechanism, are also higher than the second scenario.

This is due to low number of connections sharing

common pool of memory, in case of first scenario.

As a result higher amount of data is sent in flight

and congestion window opens up fully leading to

high throughput in case of proposed mechanism.

0

5

10

15

20

25

30

11 51 91 131 171 211 251 291 331 371
Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

ATBT

Proposed
Mechanism

(Figure 10) Receiver side throughput for eight

connections

0

0.2

0.4

0.6

0.8

1

1.2

11 51 91 13
1
17
1
21
1
25
1
29
1
33
1
37
1

Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

ATBT

Proposed
Mechanism

(Figure 11) Sender side throughput for eight

connections

0

20000

40000

60000

80000

100000

120000

21 61 10
1
14
1
18
1
22
1
26
1
30
1
34
1
38
1

Simulation time (seconds)

B
uf

fe
r

S
iz

e
(b

yt
es

) ATBT

Proposed
Mechanism

(Figure 12) Buffer size sender side for eight

connections

4.2.2 Low Memory Scenario

In case of second scenario, for 4 aggregate

number of connections running at the host. A large

gap in achieved aggregate throughput, between the

proposed and ATBT mechanism at the sender’s end

is seen. Figure 13 and 14 shows receiver and sender

side aggregate throughput. Clearly, because of low

memory the connections were unable to send large

enough data. While, our proposed mechanism

performed well in achieving high aggregate

throughput at both end. It can be seen that at sender

end, throughput remained nearly constant in case of

ATBT while our mechanism showed great variation

during the whole simulation time. This behavior is

expected, as our mechanism, estimates available

space from other connections. Thus, in this case we

have only one single connection running at the host.

As a result, aggregate throughput of the stripped

connection is a function of the available space from

1 single connection in this case.

0

2

4

6

8

10

12

11 41 71 10
1

13
1

16
1

19
1

22
1

25
1

28
1

31
1

34
1

37
1

Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s) ATBT

Proposed
Mechanism

(Figure 13) Receiver side throughput for four

connections

0

5

10

15

20

25

30

11 41 71 10
1

13
1

16
1

19
1

22
1

25
1

28
1

31
1

34
1

37
1

Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s) ATBT

Proposed
Mechanism

(Figure 14) Sender side throughput for four

connections

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

한국 인터넷 정보학회 (10권4호) 209

In case of increasing the connections to 8 at the

host, the same trend is observed, but lower than the

first case. It is evident, in this case at the sender

end; the stripped connection throughput is a function

of the average available space across 5 single flow

connections. In the beginning the throughput was

high, as the time passes when the other 5 single

flows begins sending data over the network, in that

case the buffer allocations for the connections are

reduced and contributes to nearly constant observed

aggregate throughput. At the same time, at the

receiver end ironically in the beginning a surge is

seen in achieving aggregate throughput. The

aggregate throughput achieved by sender and

receiver is of the order of Kbytes, as our graph is

drawn in the scale of Mbytes due to which the line

nearly touches the x-axis. In the end again, due to

congestion augmented with lower amount of data

send by the sender, dramatically lowers the

aggregate throughput.

Figure 15 and 16 shows the buffer allocation of

the striped connection socket which is higher than

ATBT is case of low memory scenario. While, the

behavior observed in this case is similar to high

memory scenario i.e. in case of 4 connections the

allocation is higher than 8 connections regardless

whether ATBT or proposed mechanism is applied.

And, our proposed mechanism allocates higher buffer

size than ATBT.

0

5

10

15

20

25

30

11 51 91 13
1
17
1
21
1
25
1
29
1
33
1
37
1

Simulation time (seconds)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s) ATBT

Proposed
Mechanism

(Figure 15) Receiver side throughput for eight

connections

0

5000

10000

15000

20000

25000

30000

21 61 10
1

14
1
18
1
22
1
26
1

30
1
34
1
38
1

Simulation time (seconds)

Bu
ffe

r
Si

ze
 (b

yt
es

) ATBT

Proposed
Mechanism

(Figure 16) Buffer size sender side for eight

connections

5. Conclusion

In this paper we propose a dynamic buffer tuning

technique by applying PID controller, appropriating

unused space from other connections and using cross

layer communication for acquiring available

bandwidth information. The technique is devised for

striped transport layer connection in which a single

socket buffer is shared by micro flows running on

diverse wireless paths. In the end, we show that our

proposed mechanism performs better than ATBT for

achieving high aggregate bandwidth both at sender

and receiver end.

Acknowledgment

This research was supported by the MKE

(Ministry of Knowledge Economy), Korea, under the

ITRC (Information Technology Research Center)

support program supervised by the IITA (Institute of

Information Technology Advancement)

(IITA-2009-(C1090-0903-0011)).

Corresponding author is Prof. Eui-Nam Huh.

References

[1] M. Stemm and R. Katz. Vertical handoffs in

wireless overlay networks. Mobile Networks

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

210 2009. 8

and Applications, 3(4): 335–350, 1998.

[2] H. Hsieh and R. Sivakumar. A transport layer

approach for achieving aggregate bandwidths

on multi-homed mobile hosts. Wireless

Networks, 11:99-114, 2005.

[3] M.Zhang, J. Lei, A. Krishnamurthy, L.

Peterson and R. Wang. A transport layer

approach for improving end-to-end

performance and robustness using redundant

paths. Proceedings of the USENIX Annual

Technical Conference, 8-8, 2004

[4] M. Tonouchi, H. Mineno, S. Ishihara, O.

Takahashi, and T. Mizuno. A study on

retransmission control of multipath-extended

TCP. IPSJ SIG-MBL: Mobile Computing,

28(27), March 2004.

[5] S. Saito, Y.Tanaka, M.Kunishi, Y.Nishida and

F. Teraoka. AMS: An adaptive TCP

bandwidth aggregation mechanism for

multi-homed mobile host. IEICE transaction of

information and systems, 12:2838-2847, Dec.

2006

[6] W. Bethel, B. Tierney, J. Lee, D. Gunter, and

S. Lau. Using high-speed wans and network

data caches to enable remote and distributed

visualization. Proceeding of the IEEE

Supercomputing 2000 Conference, 2000.

[7] P. Steenkiste. Adaptation Models for

Network-Aware Distributed Computations. In

3rd Workshop on Communication,

Architecture, and Applications for

Network-based Parallel Computing, 1999.

[8] T. Dunigan, M. Mathis, B. Tierney. A TCP

tuning daemon. Supercomputing, ACM/IEEE

2002 Conference, 16-22, Nov 2002.

[9] A. Bakre and B.R. Badrinath. I-TCP: indirect

TCP for mobile hosts. Proceedings of the 15th

International Conference on Distributed

Computing Systems, 136-143, June 1995.

[10] J. Semke, J. Mahdavi and M. Mathis.

Automatic TCP buffer tuning. Proceedings of

ACM SIGCOMM, 315–323, Sep 1998.

[11] E. Weigle and W. Feng. Dynamic

Right-Sizing: A Simulation Study.

Proceedings of IEEE International

Conference on Computer Communications

and Networks, 2001.

[12] E. Weigle and W. Feng. A comparison of

TCP automatic tuning techniques of

distributed computing. HPDC-11, 265-272,

July 2002.

[13] F. Yanfie, R.Fengyuan and L. Chuang.

Design a PID controller for active queue

management. ISCC, 2:985-990,2003.

[14] The Network Simulator ns-2.

http://www.isi.edu/nsnam/ns.

[15] N. Möller, I. C. Molero, K. H. Johansson,J.

Petersson, R. Skog and Å.Arvidsson. Using

radio network feedback to TCP performance

over cellular networks. CDC-EEC ’05,

7437-7439, Dec 2005.

멀티홈 모바일 호스트상에서 스트라이핑 송계층 연결을 한 응형 버퍼튜닝기법

한국 인터넷 정보학회 (10권4호) 211

◐ 자 소 개 ◑

 라 즈(Faraz Idris Khan)
2005년 National University of Sciences and Technology 졸업(학사)

2008년 경희 학교 학원 컴퓨터공학과 졸업(석사)

심분야 : 무선통신, 4G, 자원 리, 이동통신 etc.

E-mail : faraz@khu.ac.kr

허 의 남(Eui-Nam Huh)
1990년 부산국립 학교 컴퓨터공학과 졸업(학사)

1995년 The University of Texas at Arlington 컴퓨터공과 졸업 (석사)

2002년 The Ohio University 컴퓨터공학과 졸업 (박사)

2005년 9월～ 재 경희 학교 컴퓨터공학과 부교수

심분야 : 클라우드, 분산컴퓨 , 센서 네트워크, 보안. etc

E-mail : johnhuh@khu.ac.kr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

