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요    약

데이터 스트림이란 새로운 개념과 기존의 단순 데이터 사이에 존재하는 개념  차이를 극복하기 해서는 많은 연구가 
필요하다. 표 인 로써 센서 네크워크에서의 데이터 스트림 처리를 들 수 있는 데, 이를 해서는 역폭이나 에 지, 

메모리와 같은 자원  한계에서 부터 연속 질의를 포함하는 질의처리의 특수성까지 고려해야 할 상이 범 하다.  본 논
문에서는 데이터 스트림 처리에서의 물리  제약사항에 해당하는 한정된 메모리 문제를 해결하기 해 PCA 기법을 기반으
로 하는 데이터 스트림 축소 방안을 제안하다. PCA는 상호 련된 다수의 변수들을 련이 없는 은 수의 변수로 변환해
다. 본 논문에서는 질의 처리 엔진의 력을 가정하고서 센서 네크워크의 스트림 데이터 처리를 해 PCA 기법을 용하며, 

다른 센서로부터 얻어진 많은 측정값 사이에 시공간  련성을 이용한다. 최종 으로 그러한 데이터 처리를 한 임워
크를 제시하고 다양한 실험을 통하여 기법의 성능을 분석한다.

Abstract

The emerging notion of data stream has brought many new challenges to the research communities as a consequence 

of its conceptual difference with conventional concepts of just data. One typical example is data stream processing in sensor 

networks. The range of data processing considerations in a sensor network is very wide, from physical resource restrictions such 

as bandwidth, energy, and memory to the peculiarities of query processing including continuous and specific types of queries. 

In this paper, as one of the physical constraints in data stream processing, we consider the problem of limited memory and 

propose a new scheme for data stream reduction based on the Principal Component Analysis (PCA) technique. PCA can 

transform a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables. We adapt PCA for the 

data stream of a sensor network assuming the cooperation of a query engine (or application) with a network base station. 

Our method exploits the spatio-temporal correlation among multiple measurements from different sensors. Finally, we present 

a new framework for data processing and describe a number of experiments under this framework. We compare our scheme 

with the wavelet transform and observe the effect of time stamps on the compression ratio. We report on some of the results.

☞ keyword : 센서 네트워크, 데이터 스트림, 데이터 감쇄, 데이터 근사화, 주성분 분석
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1. INTRODUCTION

The principle of ubiquitous computing was first 
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elucidated by Mark Weiser [1] in 1991. The main 

idea of ubiquitous computing is to transparently 

integrate computations into the environment by 

making wireless networks consisting of tiny nodes 

containing several sensors for monitoring the 

environment such as temperature, humidity, 

illumination, etc. [2, 3, 4]. There are many emerging 

applications based on such a sensor network 

including health monitoring, passenger support 



센서 네트워크를 한 PCA 기반의 데이터 스트림 감소 기법

36 2009. 8

systems, various financial applications, smart home, 

and network monitoring [5, 6]. 

Since its emergence, enabling data stream 

processing has caused a wide variety of new tasks 

and challenges related to different fields of modern 

science. In this paper, we consider a data stream as 

a distributed and continuous information source.  

Data streams have a number of differences compared 

to conventional stored relational data [7]:

1. The data elements in the data stream arrive 

online, while conventional data is permanently 

stored.

2. The receiving system has no control over the 

order in which data elements arrive for 

processing, while traditional data can be 

distributed in any suitable manner.

3. Data streams are potentially unbounded in size, 

which is not acceptable for stored relational 

data.

4. Once a data stream element has been 

processed, it is eliminated or archived.

In this paper, we focus mostly on the third item 

in the list. Since data streams are unbounded, we 

may need an unlimited amount of memory to 

provide an appropriate speed of processing. Here, we 

present a framework for data reduction: query 

preprocessing that works as collaboration between a 

network base station and a query processing engine. 

Our approach is based on the inherent property of 

real world sensor measurements, namely, a 

spatio-temporal correlation of data tuples. At the 

core of the framework lies a well-known 

dimensionality reduction technique, Principal 

Component Analysis (PCA). PCA transforms a 

number of (possibly) correlated variables into a 

(smaller) number of uncorrelated variables called 

principal components. We establish two different 

types of data reductions, horizontal and vertical 

reductions. We propose a technique for selecting one 

between them for better performance and prove the 

effectiveness of our scheme through experiment.

2. RELATED WORK

Although we know that data approximation is 

unavoidable, there still exist applications with an 

exact query evaluation requirement. This means that 

lossy approximation is inappropriate. In [8], 

conjunctive SPJ (Select-Project-Join) queries with an 

arithmetic comparison over a data stream were 

considered and an algorithm was presented for 

determining whether or not a query can be evaluated 

using a bounded amount of memory. 

One of the simplest and natural approximation 

techniques is Sliding Windows [9]. In this technique, 

queries are evaluated using only recent data in the 

time domain or using the number of readings. This 

technique is well-defined and easily understood 

which makes the semantics of the approximation 

clear. 

Random Samples [7, 10] are based on the 

assumption that a small sample captures the essential 

characteristics of the data set. The actual 

computation for the random sample over a data 

stream is relatively easy. In order to reduce error 

from the variance in data and group-by queries, 

stratified sampling has been proposed recently as an 

alternative to uniform sampling. The reservoir 

sampling algorithm of Vitter [11] makes one pass 

over the data set and is well suited for the data 

stream model. 

Sketching Techniques use frequency moments 

which capture the statistics of the distribution of the 

values in the data stream [12]. Sketching involves 
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building a summary of a data stream using a small 

and limited amount of memory making it possible to 

estimate the answer to certain queries over the data 

set. 

Histograms also find application in data stream 

reduction. In fact, histograms are commonly used 

summary structures to concisely capture the 

distribution of values in a data set. Popular 

histograms are V-Optimal Histograms [13] and 

End-Biased Histograms. 

Wavelets are often used as a technique to provide 

a summary representation of the data. Wavelets’ 

coefficients are projections of the given signal (set of 

data values) onto an orthogonal set of basis vectors. 

Often Haar wavelets are used in databases for their 

ease of computation. In [14], the use of wavelets 

was proposed for general purpose approximate query 

processing and how to compute joins, aggregations, 

and selections was entirely demonstrated in the 

wavelet coefficient domain.  

It becomes important to devise techniques for 

computing wavelets in the streaming model in order 

to extend this body of work to data streams. There 

has been recent work in computing the top wavelet 

coefficients in the data stream model. The technique, 

described in [15], to approximate the best dyadic 

interval that most reduces the error, gives rise to an 

easy greedy algorithm to find the best B-term Haar 

wavelet representation. This work improves upon a 

previous result by Gilbert, et al. [16]. 

Compressing Historical Information [17] is based 

on the notion of the base signal which is constructed 

and periodically updated from new data tuples. Here, 

the main assumption is that the data stream has an 

inherent real world property, namely, spatial/temporal 

correlation.  

Recently, a new notion of the probabilistic or 

stochastic stream [18, 19, 20, 21] has appeared. The 

main difference from the regular data stream is that 

the probabilistic distribution law of data tuples is 

assumed to be known or discoverable. Our 

framework benefits from taking into account this 

new sort of data streams as we demonstrate later. In 

[19], an extension of a conventional relational model 

called Probabilistic Stream Relational Algebra 

(PSRA) was introduced to model existing 

deterministic data stream models. 

PCA is a useful statistical technique having 

applications in many fields such as face recognition 

and digital image compression [22]. In [23], we 

already presented the motivation and basic algorithm 

for the PCA-based data stream approximation. In this 

paper, we describe our extensive experiments to 

prove its effectiveness. Also, we consider data time 

stamps to find their influence on the compression 

ratio in terms of the relative approximation error.

 

3. FRAMEWORK DESCRIPTION

In this section, we describe some details about our 

framework for implementing data reduction. Since 

we assume that we work with a probabilistic data 

stream and that the probabilistic characteristics of the 

data stream are constant during a significant period 

of time, we do not need to send the FeatureVector 

with every data set from the base station to the 

query processing engine. We can permanently store 

this vector at the engine. In order to keep 

information up-to-date, we can update it periodically. 

All the assumptions we made for this work can be 

found in [23]

3.1 ARCHITECTURE

The framework architecture is depicted in Figure 

1. In the figure, sensor nodes proactively send 

information in the direction of the base station. The 
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base station collects the stream in a sliding window 

of size m and processes it by applying the PCA 

algorithm. The query processing engine provides 

error requirements to the base station and receives 

back the reduced data.

(Fig. 1) Framework architecture

3.2 PCA DATA REDUCTION 

In our PCA-based general algorithm for data 

reduction, the input parameters are required for 

correct data processing: S is the Data Stream, ε is 

the error provided by the query processing engine, 

and m is the sliding window size which represents 

the maximum number of n-attribute tuples that can 

be processed at the base station during one cycle.

 In the algorithm, the first four lines deal with two 

special cases: (i) when the application agrees to lose 

all the data (ε equals one), the base station sends 

nothing to the query processing engine, and (ii) 

when the application requires no data loss (ε equals 

zero), the base station returns the complete data set. 

The lines 5-10 are for computing the FeatureVector. 

The loop is responsible for the data reduction 

restricted error correspondence. The function 

ERROR in line 15 calculates the error between the 

OriginalData and RestoredData. We discuss this 

calculation in Section 3.4.

Algorithm PCA Data Reduction
input: S, ε, m
1:  if  (ε == 1) then
2:     return
3:  if ( ε == 0) then
4:     return S
5:  OriginalData = S, Result =  OriginalData
6:  compute Mean matrix for OriginalData
7:  DataAdjust = OriginalData - Mean
8:  compute covariance matrix cov for DataAdjust
9:  calculate eigenvectors and eigenvalues matrices
10: obtain FeatureVector by sorting eigenvectors
11:  for i = m down to 1
12:       eliminate column # i from FeatureVector 
13:       calculate FinalData
14:       calculate RestoredData 
15:       error = ERROR(OriginalData, RestoredData)
16:       if  (error < ε )   then
17:             Result = FinalData 
18:             continue
19:       else return  Result 

3.3 TYPES OF DATA REDUCTION

In this section we consider a base station with 

window size m × n (m tuples with n attributes) as 

in Figure 2. We offer two different types of data 

stream reductions; vertical reduction and horizontal 

reduction. Later, we give a heuristic for their proper 

selection.

Horizontal reduction is the data stream 

compression eliminating complete data tuples. This 

reduction means elimination of rows (horizontal 

dimension) from the base station data set. Similarly, 

we can work with the columns in the same way if 

we imagine the table rotated 90 degrees and 

implement a vertical reduction. Hence, vertical 

reduction is complete elimination of attributes, or 

columns (vertical dimension) from the base station 

data set.
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(Fig. 2) Types of Data Reduction

In order to find out what kind of reduction is 

more beneficial in any particular case, we propose a 

simple heuristic: First we try to estimate how much 

data we can delete using the vertical and the 

horizontal reductions and based on this estimation, 

we can choose a more profitable one. As we have 

shown, we can eliminate the eigenvectors with the 

smallest eigenvalues.

Suppose that µ is the upper bound of the 

eigenvalues we can delete from the FeatureVector. v 

and h are the number of eigenvalues with a value 

lower than µ in the vertical and horizontal 

dimensions, respectively. We can use vertical 

reduction if v*m < h*n. Otherwise, we can use 

horizontal reduction. The value of µ is supposed to 

be chosen experimentally.

3.4 ERROR EVALUATION METRICS

Error evaluation is one of the most important 

parts of our framework because it has effects on the 

proper data reduction and thus correct query 

processing. As possible variants, we can consider 

any existing error metrics such as sum squared error, 

maximum error of the approximation, and relative 

entropy because our method is not oriented toward a 

specific error metric. Line 15 in the algorithm shows 

that the procedure ERROR can be chosen 

independently from other parts of the algorithm. 

4. EXPERIMENTS

In this section, we describe our implementation of 

the proposed algorithm and several experiments with 

some real data sets. We have used Weather Data that 

includes air temperature, dew point temperature, 

atmosphere pressure, wind speed, and altitude 

measurements for a station at the University of 

Washington for the year 2007 [24]. As a second data 

set, we have used Stock Data that consists of 

information on trades that were performed daily in 

the end of April of the year 2007 [25].

4.1 WEATHER / STOCK DATA EXPERIMENT

Figure 3 shows an illustration of the dependency 

between the compression ratio and the relative 

approximation error in the cases of horizontal (dotted 

line) and vertical (dashed line) reductions for the 

weather data. The results are stepwise functions 

since we eliminated entire tuples (or attributes for 

vertical reduction). The value of the steps depends 

on the sliding window size m (or number of 

attributes n). As you can see, in this particular case, 

the vertical reduction is more beneficial than the 

horizontal reduction over the entire error range.

(Fig. 3) Weather tuples approximation
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(Fig. 4) Stock tuples approximation

Figure 4 shows the dependency between the 

compression ratio and the relative approximation 

error in the cases of horizontal (dotted line) and 

vertical (dashed line) reductions for the stock data. 

The Stock Data window size was twice as small as 

the Weather Data, while the number of attributes 

was bigger by one unit. In the figure, you may 

notice that in contrast to the Weather Data, there is 

an error range where it is more profitable to use 

horizontal reduction than vertical reduction. This 

example clearly illustrates a situation where we can 

select an appropriate reduction technique based on an 

acceptable error value and a posteriori knowledge. 

4.2 WAVELET EXPERIMENT

The purpose of this experiment is to compare 

approximation properties of the PCA and wavelets. 

We use the same weather and stock market data as 

in the previous experiment. Also, we use the 

Daubechies wavelet since it is the most commonly 

used and the approximation error as error metric.

Figure 5 shows the original and restored stock 

data after a wavelet approximation. Here, the solid 

line indicates the original data; the dashed line 

indicates the restored data. In the figure, the number 

of used levels of wavelets is five. This is the 

maximally correct approximation provided by these 

sorts of wavelets. Obviously, the approximation is 

not good even with the maximal number of wavelet 

coefficients.

The PCA approximation, corresponding to the 

maximally correct approximation provided by the 

wavelets (with the same compression value of 50%), 

is indicated in Figure 6. As in Figure 5, the solid 

line indicates the original data and the dashed line 

indicates the restored data.

(Fig. 5) Wavelet approximation (1, stock data)

(Fig. 6) PCA approximation (stock data)

The PCA approximation is so much better that the 

plots overlap each other if they are drawn in the 

same style. This is why we draw the PCA data by 

using lines rather than in a step-function style. For 

comparison, the same plot, but after wavelet 

approximation, is depicted below in Figure 7.

(Fig. 7) Wavelet approximation (2, stock data)
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Figure 8 shows the original and restored weather 

data after wavelet approximation. Here, the solid line 

indicates the original data and the dashed line 

indicates the restored data. In the figure, the number 

of used levels is six. This is the maximally correct 

approximation provided by this sort of wavelets.

(Fig. 8) Wavelet approximation (1, weather data)

The PCA approximation corresponding to the 

maximally correct approximation provided by 

wavelets (with the same compression value 50%) is 

shown in Figure 9.

(Fig. 9) PCA approximation (weather data)

As in the case of stock data, a PCA approximation 

is also much better. Again, the plots overlap each 

other if they are drawn in the same style. For 

comparison, the same plot, but after a wavelet 

approximation, is depicted below in Figure 10.

(Fig. 10) Wavelet approximation

(2, weather data)

As you can see, error values are extremely 

different and much better for the PCA. Note that the 

compression ratios for the both cases are 50%. The 

compression ratios of the wavelet and the PCA 

approximation for stock and weather data are shown 

in Figures 11 and 12, respectively.

From this, we conclude: (i) the minimal 

compression ratio provided by Daubechies wavelets 

is limited to 50% while PCA potentially provides all 

possible values from the entire range. PCA depends 

only on the sliding window and data stream 

parameters such as the possible number of tuples 

allowed for processing and the number of attributes. 

(ii) PCA is much better than Daubechies wavelets in 

respect to compression ratio and relative 

approximation error. Although wavelet approximation 

generates a bigger error than PCA, it provides a 

compression ratio close to 100%.

(Fig. 11) Compression ratios of PCA and Daubechies wavelets 

(stock data)
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(Fig. 12) Compression ratios of PCA and Daubechies wavelets 

(weather data)

4.3 A TIME STAMP EXPERIMENT

In this experiment, we find how data time stamps 

influence the compression ratio in terms of the 

relative approximation error. Basically, we will 

discover how our method handles a time correlation. 

We use same weather and stock market data with 

different time stamps and the relative approximation 

error

For stock data we use four different data sets 

created the first months of winter, spring, summer, 

and fall 2007. We assume the first month of winter, 

2007 is January. You may find horizontal and 

vertical reductions for the stock data in Figure 13.

(Fig. 13) Horizontal and vertical reductions 

(stock)

(Fig. 14) Horizontal and vertical reductions 

(weather)

In the figure, the lines without symbols represent 

vertical reduction, and the lines with symbols 

represent horizontal reduction. As in our first 

experiment for each of four time stamps, there is an 

error range where it is more profitable to use vertical 

reduction than horizontal reduction.  However, even 

though vertical reduction for the spring period is 

more preferable among the entire vertical reductions 

of the experiment, its usability range is the shortest. 

At the same time, even though horizontal reduction 

for the winter period is worst, it has the longest 

usability range for the vertical reduction.

For the weather data, we use four different data 

sets created the first months of winter, spring, 

summer, and fall 2007 as we use for the stock data. 

In Figure 14, the lines without symbols represent 

vertical reduction and the lines with symbols 

represent horizontal reduction. For all the entire error 

range, horizontal reduction operates better than 

vertical reduction. 

From the result, we conclude: (i) Stock data has a 

pretty strong dependency between the compression 

ratio and the time stamp while in the case of weather 

data this dependence is not really sensible.  (ii) The 

compression ratio for horizontal reduction is better 

for all of the error range in the case of weather data 

but this is not true for stock data. This difference 
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proves that the proper selection between two 

compression techniques is important for every data 

set and depends on the data set’s internal properties. 

(iii) The degree of usability of one or another 

reduction technique can depend on the time stamp.

5. CONCLUSION

In this paper, we presented a new PCA-based data 

stream reduction scheme for sensor networks 

assuming cooperation between a base station and a 

query processing engine. We established two 

different data reduction methods, horizontal and 

vertical reductions, and proposed a technique for 

selecting one between them. We tested our scheme 

on two existing types of real data sets. The 

simulation result demonstrated that our reduction 

algorithm achieved a high data compression ratio 

with a small relative approximation error. This 

proved that our proposed framework is appropriate 

for actual sensor network data processing and 

applicable for real data sets. 
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