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Performance Enhancement of Algorithms based on Error Distributions
under Impulsive Noise
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ABSTRACT

Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in
impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization
has two components; A4, for kemel function of error pairs and the other 5, for kernel function of errors. In this paper, it is analyzed

that the first component is to govern gathering close together error somples, and the other one B, is fo conduct errorsample
concentration on zero. Based upon this analysis, it is proposed to normalize A, and 5, with power of inputs which are modified by

kemelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples fo zero. Through
comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of mulfipath equalization under
impulsive noise, their roles and efficiency of the proposed normalization method are verified.

= Keyword: Components, Error distribution, Delta function, Euclidean distance, Impulsive noise.

1. INTRODUCTION system output. The averaging process ofsquared error

samples can mitigate the effects of the Gaussian noise. In

Weight adjusting algorithms in the adaptive signal impulsive noise environments, however, the averaging effect

processing area are derived through minimizing or is defeated since a single large, impulse noise sample can

maximizing a chosen performance criterion [1]. One of dominate  these sums.

well-known performance criteria, the MSE (mean squared
error) measures the average of the squares of the error signal
which is the difference between the reference signal and the
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Unlike the MSE-based learning methods, the information-
theoretic learning (ITL) is based on the information potential
concept that data samples can be treated as physical particles
in a potential field so that they interact with each other by
information forces [2]. The ITL method is expressed usually
as probability distribution functions constructed by the kernel
density estimation method with the Gaussian kernel [3].
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As one of ITL criteria, Euclidian distance (ED) between
two distributions obtained from biomedical data sets has been
successfully applied for supervised training of adaptive
systems for medical diagnosis [4]. For FIR (finite impulse
response) adaptive filter structures in impulsive noise
environments,ED between error distribution and Dirac delta
function has been used an efficient performance criterion
taking advantage of the outlier-cutting effect of Gaussian
kernel for error signal [5]. In this approach with error
distribution and delta function, minimization of the ED
(MED) has led to adaptive algorithms that adjust weights so
as for the error distribution to match a delta function, that is,
error samples concentrate on zero [6].

This MED algorithm has a drawback of heavy
computational burden due to the double summation
operations at each iteration time for the estimation of its
gradient. But this burden has been significantly reduced by
employing a recursive gradient estimation method [7].

The gradient in ED minimization process of the MED
algorithm has two components; one for kernel function of
error pairs and the other for kernel function of error
themselves. The roles of these two components have not
been analyzed or experimented in scientific literatures.

In this paper, we analyze the roles of the two components
and based on the analysis, we propose a method of
normalizing those components with power of modified
inputs. Through simulation in multipath channel equalization
under impulsive noise, their roles of managing error samples
are verified and it is shown that the proposed method of
normalization significantly reduces misadjustment and lowers
steady state MSE in impulsive noise environment.

2. MSE AND EUCLIDEAN
DISTANCE OF ERROR
DISTRIBUTIONS

For the structure of tapped delay line (TDL) with the
input vector X =[x X X ] and weight Wi
— T .
=W Wikl at time k, the output Y becomes

v =W X, Letting 9+ be the desired signal, the error

signal is € =d, =Y, and commonly used in performance
criteria or cost functions. The mean squared error (MSE)
criterion as one of the most widely used criteria is statistical
average £[] of error power €, that is, MSE = E[€], For
practical implementation we can use the instant squared error
(ISE) € as a cost function. Minimization of this ISE,

de;
adopting the gradient gw = —2€¢:X« and a step size Hius

leads to the least mean square (LMS) algorithm [1].

2
e
Wi =W, =ty aivl;, =W, +u,,s2¢X, )

We can observe in (1) that a single large error sample
induced from impulsive noise can generate a big weight
perturbation Wi+1 = Wi, The perturbation becomes zero only
when the error ¢ is zero. So we can predict that the weight
update process (1) can be unstable in impulsive noise
environment.

Unlike the MSE based on the second order information of
error power, the error distribution function can be used in
constructing performance criterion. The error distribution

function /fz(€) can be derived non-parametrically by using
the kernel density estimation method with Gaussian kernel

1 —e?
G.(e)=——exp[—%
=) o2z Plos) and error samples {ek’ek—lﬁ"'ﬂ,

‘ek—NJrl} where N is the sample size and O is the kernel
size [3].

] k
e)=— G_(e—e
O XACN °
As a performance criterion, the Euclidean distance
ED[ f;(e),6(e)] of error distributions for FIR filtering has

been introduced in [5], where the distance £D[f;(e),6(e)]
is defined as the distance between the distribution of error

signal f;(€) and a Dirac-delta function 9(e),

ED[f,(e),6(e)] = [[f(e)de—[S(e)) de
= [f2(e)de+ [8%(e)de~2£,(0) 3)
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Minimization of ED[f;(e),6(e)] (MED) forces the
distribution of system error fz(€) to become a shape of

impulse function &(e) located at zero. This implies that
system error samples are forced to become zero.

The fact that the term J5z(€)de in (3) which is not

adjustable can be treated as a constant C leads ED to
EDLf1(e),8(0)]= [f}(e)de+c=2f(0). @

For minimization of ED[ f;(e),d(e)] with respect to W,

we have

0ED[ f;(e),6(e)]

oW =4, B, ®)

k

where

3[ 17 (e)de
A =—r—
oW

k

1 k k
TN 2, 2

i=k—=N+1 j=k=N+1

-G (e, —e) (X, -X) | ©6)
af(0) 2 £
=222 = E -G X,
B, W |, o’N i:k—)\fll -(e)- X, . @]

Then the resulting algorithm with the step size #,zp

becomes

w,, = w, _2EDL(.5)]
oW

k

=W, _ typp Ay + ep By ®

For the convenience’s sake, this algorithm will be referred
to in this paper as MED algorithm.

3. GRADIENT ANALYSIS AND
INPUT CONTROL BY
KERNELLED ERROR

With The term (€, =€) in 4, of (6) means the distance
between the two error samples, that is, how far the two
errors are located from each other. The error pair (e;—e)
may be considered to have some information as to the extent
of spread of error samples. Based on the fact that entropy is
defined as a measure of how evenly energy is spread or how
far apart the positions of components of a system are, this

information of error-sample gap (e;—€) can be considered
as being related with error entropy. Through the

minimization of ED[ f;(e),d(e)], that is, the minimization
of .ffgz (e)de, the error gap i =€ ~%in A, becomes
zero so that the error samples are forced to come close to
cach other. This indicates that 4« contributes to narrowing
the gap between error samples, though it is uncertain where
the error samples are heading.

Since the By in (5) plays in reverse direction of 4, as
in the minimization of —27,(0) of ED[f,(e),d(e)], that
is, in the maximization of 2/;(0), the error sample ¢; in
(7) is forced to be concentrated on zero. Now it becomes
certain where the error samples are heading due to B;.

In short, 4, is involved in minimization of spreading of

error samples and B; takes part in maximization of
error-sample concentration on zero. From this point of view,
we may regard that B, plays a role of lowering minimum
MSE and 4, is related with lowering misadjustment or

fluctuation of minimum MSE.
Similar to the above analysis of error gap, the term

(X, =X,) in 4, means a distance between the two input
vector X; and X; in the input vector space. Letting X,
be the input pair (X;—X;), the term X,; may be
considered to have some information about the extent of
spread of input vectors. That can have us refer to X, as

input gap that may also be related with input entropy. Then,

A, can be rewritten as

k k

1
A 2o 2, A

k=N+1 j=k-N+1

Gole) X, )

el

1= olEll HEEts (19235)
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We observe that the gradient 4; in (5) and (6) is very
2

similar to giw =-2¢,X, in (1) in the aspect of error and

input terms. It can be noticed that 4, comprises summations

of error-gap values and input-gap vectors while the LMS has
just an error and an input vector. This observation gives us

an insight that e, of MSE criterion can be corresponding to
error gap €;x, and X, of MSE criterion can be to
G (e, ,)X;, as a modified input-gap vector. This
modified input G, ;5(¢;,)X;; in 4, is actually magnitude
controlled by kemelled error-gap, so that it will be referred
to in this paper as an input controlled by kemelled error-gap
(ICKEQG).

X[ = G (e )X, (10)
In an element expression,
X =G, 5e )%, =G, e (X, - x,) 1n
Then, 4, becomes

] k k
4 =5omE 2 2 eX" (12)

i=k—N+1 j=k—N+1

On the other hand, the term G,(e,) X,in (7) can be
viewed as a modified input which is controlled by kernelled
error. Similar to (10), this modified input in B, will be
referred to as ICKE (input controlled by kemelled error).

We can observe that the weight perturbation W, —
Wi = ~tyepAp + yepBe in (8) contains G, ;5(¢;) and
G,(e,) in ICKEG of 4, and ICKE of B,, respectively.
This implies that large error-gap values or large error
samples induced from impulsive noise can be transformed to
significantly mitigated values through the Gaussian kernel.
Therefore the perturbation becomes small even when the
error-gap values or error samples are very large as well as
small. So we can anticipate that the MED algorithm (8) has
very low weight perturbation in impulsive noise environment.

4. POWER ESTIMATION OF
MODIFIED INPUT FOR
NORMALIZATION

For the purpose of minimizing weight perturbation
[W,., - W[ of the LMS algorithm in (1), the NLMS

(normalized LMS) algorithm has been introduced where the
step size is normalized by the averaged power of the current

Zxk . [

m=0

input samples HXkH2 =X;X

Applying this approach to MED we propose in this
section to normalize the step size #,,, in some ways. Since
we can see that B, is related with minimum MSE and 4, is
associated with fluctuation of minimum MSE, the step size

HUyep is 10 longer necessary to be used commonly in 4,

and B,. This view leads us to have

W, =W = lyep aAi ~ Hap pBi, 15)

XICKE — X . .
k G, (&) X4 (13) and propose to normalize each step size separately. That
is, Myep.4 is to normalized by the average power P,(k)
Then, B, becomes i o .
from X1 =880 w5 x/5 ] and e, ais by
5220 2 T R
aw N: i=k—. Iv+]
2 k ke /uME[ 4 — l[lMED — #MED
= e X 14 R 0 T B SR T
I (14) () LY S (16)
i=k=N+1 j=k—N+1
52 2018. 6
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U _ My _ Hyiep
MED-B P, (k) i Zk: x!FKE‘Z . 17)
NS

1 k
Since the average operation I Z maynot be effective

i=k—N+1
in defeating the impulsive noise contained in input, the
denominators of (16) and(17) can frequently become too
small or too big under impulsive noise. This problem may
cause the system to be sensitive to impulsive noise. Also the
double summation of the denominators places a heavier
computational burden on the algorithm. To avoid these
problems, tracking the average power P,(k) and P,(k)

recursively can be employed as

P, (k)= BP(k-)+(1-f) Y.

ICKEG|?
DT as)
Py(k) = B, (k=D + (1= B[ (19)

The recursive estimation of average power in (18) and

(19) can be expressed as a z-transformed system R(z) with
.I(‘KEG

L 2
input Z X, ‘ and output power P,(k). The system

j=k—N+1

R(z)is applied commonly to input ‘x,fCKE ‘2 and output power

Py(k).

V4

RE)= AQ)=0-P) =5

(20)

The system R(z)is a single-pole low-pass filter with its

time constant controlled by the parameter 8 (0< B<1).
The proposed algorithm with the step sizes normalized
separately can be summarized as follows;

/ MED / MED
W, =W, - A4, + B,
k+1 k })A(k) k })B(k) k> (21)

where P, (k) and F,(k) are estimated by (18) and (19),
respectively.

5. DISCUSSION AND RESULTS

It has in section 3 been analyzed that 4, is associated
with the role of getting error samples close to each other,
that is, reducing fluctuation of minimum MSE and B, is
related with error-sample concentration on zero, that is,
lowing the minimum MSE. To verify this analysis under the
assumption that steady state MSE is close to minimum MSE,
we expetiment the proposed algorithm with respect to steady
state MSE in the following 3 cases.

Case 1)
HMyep
=W, —ZMED 4o
W =W, P, (k) A+ yp By, (22
Case 2)
Hyvep
W, =W, - A+ B, 23
K+l &~ Myepdy P,(k) k (23)
Case 3)
Wi = W, =0 M 24)

Pk Pyt

The MED algorithm in (8) is without normalization to
4, nor B,. Casel is for observing changes in fluctuation of
steady state MSE by normalizing only /p 4 compared to
MED. Case 2 is to observe whether the normalization of
HMyep.s lowers the steady state MSE of MED without

managing 4, . Finally we see if Case 3 employing e
and Hyepp simultaneously yields both of the two

performance enhancements; reduced fluctuation of steady
state MSE and lowered steady state MSE.

For the experiment, a base-band communication Casel
with impulsive-noise added multipath fading channel is used.
One of the equally probable 4 symbols (-3, -1, 1, 3)) is
chosen randomly and transmitted. The transmitted symbol is

distorted by the multipath channel H(z)=0.304+
-0.903z '+0.304z *[8]. The channel output is contaminated
with impulsive noise 7, and then comes into the equalizer as

input. The impulsive noise #; has the following distribution

el

1= olEll HEEts (19235)

53



E£4Y HSslIM 24 Z=of 7|8tet 22| F2

ME=SEAE
[SX=R=¥-}

function f(1,) where o0},is the variance of impulses
generated according to Poisson process with occurrence rate
€ and oy, is the variance of the background Gaussian

noise [9][10].

1-¢ -n?

_ k
f(n) O_Gl\’me’(p[ 20'(2;N ]

2
£ -n,

+ exp[
V2r(cly +03)  2ATe+ o)

. @

An impulsive noise sample used in this simulation is
described in Figure 1 where &=10.03, o] =0y =0.001

and 02 =02, +02 =50.001.

30 T T T T T

20

Volt

-20

u T T T T
0 2000 4000 6000 8000 10000 12000
Number of samples

(TE 1) 44 T3 vy S AWGN

(Figure 1) The impulse noise and background AWGN.

The equalizer has an 11-tap TDL structure and the step
size for LMS is #;ys = 0.002. The MED and the proposed
algorithms have common parameters valued the same as
Hyep =0.01, N=6, and ¢ =0.8. Figure 2 shows the
MSE learning curves for LMS, MED and Casel proposed.
As discussed in section 2, we observe that the learning curve
of LMS does not drop down below -6 dB showing no ability
to cope with impulsive noise. On the other hand, the MED
type algorithms show rapid and stable convergence. The
same speed of convergence between MED and Case 1 is
observed but after convergence the Casel shows smaller
fluctuation of steady state MSE than the original MED

algorithm verifying the analysis of 4. Noticing the same
steady state MSE, we find that 4, plays the role of pulling
error samples close together. In Figure 3 MED and Case 2 are
compared and shows that after convergence the Case 2 yields
significantly lower steady state MSE than the original MED
but has no effect on perturbation in steady state. This indicates
that the role of B, is related with minimum MSE and its
power normalization produces improvement of lowering

minimum MSE. Furthermore, Case 3 employing Huzp 4 and
HMyep,s  simultaneously proves to yield both of the two

performance enhancements revealing reduced fluctuation of
and lowered steady state MSE as depicted in Figure 4.

2 —LMS

0] MED

2] — NMED (Case 1)
47 Ak

AL e hn asbhatasit
w

10 log MSE

T T T T T
0 2000 4000 6000 8000 10000 12000
Number of samples

(a8 2) 4, H7slol Chist MSE +8Ms
(Figure 2) MSE convergence performance for 4,

normalization.

. MED
] ——— NMED (Case2)

10 log MSE

T u U
0 2000 4000 6000 8000 10000 12000
Number of samples

(3% 3) B, drslof oiist MSE +EMs
(Figure 3) MSE convergence performance for B,

normalization .
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24 MED
0- —— NMED (Case 3)

10 log MSE

T T T T T
0 2000 4000 6000 8000 10000 12000
Number of samples

(O3l 4) 4.2 B, dwslol st MSE +=EMs
(Figure 4) MSE convergence performance for 4,

and B. normalization.

6. CONCLUSION

The Euclideandistance between error distribution and
Dirac delta function as a performance criterion can be
minimized in order to force the distribution of system error
to come close to a shape of delta function located at zero.
The minimization process uses its gradient, and the gradient
has two components; one for kemel function of error-gap
value and the other for kemel function of error.

In this paper, we analyze that the first component 4, is
to govern minimization of entropy error, that is, gathering
close together error samples, and the other component B, is to
take part in maximization of error-sample concentration on
zero. Based on this, we propose that normalizing 4, and B,
with power of modified inputs through kemelled entropy
errors or errors can improve their roles of reducing error-gap
(fluctuation of steady state MSE) and error value (minimum
MSE), respectively.

Through simulation in multipath channel equalization
under impulsive noise, it is revealed that 4, and B, has
different roles of managing error samples and the proposed
method of normalization with power of modified inputs
through kernelled error-gap value and error sample can
improve learning performance with reducing misadjustment
and lowering steady state MSE in impulsive noise

environment.
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