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충격성 잡음하에서 오차 분포에 기반한 알고리듬의 성능향상 

Performance Enhancement of Algorithms based on Error Distributions 
under Impulsive Noise 

김 남 용1* 이 규 영1

Namyong Kim Gyoo-yeong Lee

요    약

오차 신호에 대해 가우시안 커널이 가지는 과도신호 차단효과를 기반으로 설계된 오차분포와 델타함수 사이의 유클리드 거리(ED)

가 충격성 잡음하에서 효과적인 성능준거로 사용되어왔다. ED의 최소화 과정에서 필요한 기울기는 두 가지 성분, 즉, 오차 쌍의 커널

함수에 대한 성분

와 오차 샘플 자체의 커널함수에 대한 성분 


를 가진다.  이 논문에서는 성분 


가 오차 샘플들을 서로 결집시

키는 역할과 관련되어 있으며, 성분 

는 오차샘플들의 결집위치가 영(0)이 되는 문제와 관련되어 있다고 분석되었다. 이 분석에 기

반하여, 이 논문에서는 오차 샘플간 간격을 좁히는 역할을 강화하고자 

를 커널 통과된 오차쌍의 전력으로 정규화하고, 오차 샘플

들을 0점에 당기는 역할을 강화하고자 

를 커널 통과된 오차샘플 자체의 전력으로 정규화하는 방안을 제안하였다. 충격성 잡음과 

다중경로 페이딩 채널 환경하에서 시뮬레이션을 시행하여, 정상상태의 MSE 가지는 흔들림 정도와 최소 MSE  값을 비교 분석하였다. 

그 결과, 제안된 방식이 가지는 효용성과 두 성분의 역할이 분석과 일치함이 규명되었다

주제어: 성분, 오차 분포, 델타함수, 유클리드 거리, 충격성 잡음.

ABSTRACT

Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in 

impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization 

has two components; 

 for kernel function of error pairs and the other 


 for kernel function of errors. In this paper, it is analyzed 

that the first component is to govern gathering close together error samples, and the other one 

 is to conduct error-sample 

concentration on zero. Based upon this analysis, it is proposed to normalize 

and 


 with power of inputs which are modified by 

kernelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples to zero. Through 

comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of multipath equalization under 

impulsive noise, their roles and efficiency of the proposed normalization method are verified.     

☞ Keyword: Components, Error distribution, Delta function, Euclidean distance, Impulsive noise.

1. INTRODUCTION

Weight adjusting algorithms in the adaptive signal 

processing area are derived through minimizing or 

maximizing a chosen performance criterion [1]. One of 

well-known performance criteria, the MSE (mean squared 

error) measures the average of the squares of the error signal 

which is the difference between the reference signal and the 
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system output. The averaging process ofsquared error 

samples can mitigate the effects of the Gaussian noise. In 

impulsive noise environments, however, the averaging effect 

is defeated since a single large, impulse noise sample can 

dominate these sums. 

Unlike the MSE-based learning methods, the information- 

theoretic learning (ITL) is based on the information potential 

concept that data samples can be treated as physical particles 

in a potential field so that they interact with each other by 

information forces [2]. The ITL method is expressed usually 

as probability distribution functions constructed by the kernel 

density estimation method with the Gaussian kernel [3]. 
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As one of ITL criteria, Euclidian distance (ED) between 

two distributions obtained from biomedical data sets has been 

successfully applied for supervised training of adaptive 

systems for medical diagnosis [4]. For FIR (finite impulse 

response) adaptive filter structures in impulsive noise 

environments,ED between error distribution and Dirac delta 

function has been used an efficient performance criterion 

taking advantage of the outlier-cutting effect of Gaussian 

kernel for error signal [5]. In this approach with error 

distribution and delta function, minimization of the ED 

(MED) has led to adaptive algorithms that adjust weights so 

as for the error distribution to match a delta function, that is, 

error samples concentrate on zero [6].  

This MED algorithm has a drawback of heavy 

computational burden due to the double summation 

operations at each iteration time for the estimation of its 

gradient. But this burden has been significantly reduced by 

employing a recursive gradient estimation method [7].

The gradient in ED minimization process of the MED 

algorithm has two components; one for kernel function of 

error pairs and the other for kernel function of error 

themselves. The roles of these two components have not 

been analyzed or experimented in scientific literatures. 

In this paper, we analyze the roles of the two components 

and based on the analysis, we propose a method of 

normalizing those components with power of modified 

inputs. Through simulation in multipath channel equalization 

under impulsive noise, their roles of managing error samples 

are verified and it is shown that the proposed method of 

normalization significantly reduces misadjustment and lowers 

steady state MSE in impulsive noise environment.

2. MSE AND EUCLIDEAN 

DISTANCE OF ERROR 

DISTRIBUTIONS

For the structure of tapped delay line (TDL) with the 

input vector kX
T

Lkkk xxx ],...,,[
11 +−−= and weight kW

T

kLkk www ],...,,[
,1,1,0 −= at time k, the output ky  becomes

k

T

kky XW= . Letting kd  be the desired signal, the error 

signal is kkk yde −= and commonly used in performance 

criteria or cost functions. The mean squared error (MSE) 

criterion as one of the most widely used criteria is statistical 

average ][⋅E  of error power 
2

ke , that is, ][ 2

keEMSE = . For 

practical implementation we can use the instant squared error 

(ISE) 
2

ke  as a cost function. Minimization of this ISE, 

adopting the gradient W∂
∂ 2

ke

kke X2−=  and a step size LMSμ  

leads to the least mean square (LMS) algorithm [1].

W
WW

∂

∂
-

2

1+
=

k

LMSkk

e
μ  kkLMSk eμ XW 2+=           (1)

We can observe in (1) that a single large error sample 

induced from impulsive noise can generate a big weight 

perturbation kk WW −+1 . The perturbation becomes zero only 

when the error ke  is zero. So we can predict that the weight 

update process (1) can be unstable in impulsive noise 

environment. 

Unlike the MSE based on the second order information of 

error power, the error distribution function can be used in 

constructing performance criterion. The error distribution 

function )(efE  can be derived non-parametrically by using 

the kernel density estimation method with Gaussian kernel

]
2

exp[
2

1
)(

2

2

σπσσ
e

eG
−=

 and error samples {
1
,...,, −kk

ee , 

}
1

, +−Nk
e  where N  is the sample size and σ  is the kernel 

size [3]. 

∑
+−=

−=
k

Nki

iE eeG
N

ef )(
1

)( σ  .              (2)

As a performance criterion, the Euclidean distance 

)](),([ eefED E δ  of error distributions for FIR filtering has 

been introduced in [5], where the distance )](),([ eefED E δ  

is defined as the distance between the distribution of error 

signal )(efE  and a Dirac-delta function )(eδ . 

∫∫ −= deedeefeefED EE

2)]()([)](),([ δδ     

∫∫ −+= )0(2)()( 22

EE fdeedeef δ .                (3)
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Minimization of )](),([ eefED E δ  (MED) forces the 

distribution of system error )(efE  to become a shape of 

impulse function )(eδ  located at zero. This implies that 

system error samples are forced to become zero.       

The fact that the term ∫ dee)(2δ  in (3) which is not 

adjustable can be treated as a constantc leads ED to 

)0(2)()](),([ 2

EEE fcdeefeefED −+= ∫δ .         (4)

For minimization of )](),([ eefED E δ  with respect toW , 

we have 

k

E eefED

W∂
∂ )](),([ δ

kk BA −= ,                   (5)

where 

=kA

k

E deef

W∂

∂∫ )(2

   ∑ ∑
+−= +−=

−=
k

Nki

k

Nkj

ij ee
N 1 1

22
)(

2

1

σ

     )()(
2 ijij eeG XX −⋅−⋅ σ  ,               (6)

=kB ∑
+−=

⋅⋅=
∂

∂ k

Nki

iii

k

E eGe
N

f

1

2
)(

2)0(
2 X

W
σσ .      (7)

Then the resulting algorithm with the step size MEDμ

becomes    

k

E
kk

eefED

W
WW

∂
∂−=+

)](),([
1

δ
    

    kMEDkMEDk BμAμ    _ += W .                 (8)

For the convenience’s sake, this algorithm will be referred 

to in this paper as MED algorithm. 

3. GRADIENT ANALYSIS AND 

INPUT CONTROL BY 

KERNELLED ERROR

With The term )( ij ee −  in  kA  of (6) means the distance 

between the two error samples, that is, how far the two 

errors are located from each other. The error pair )( ij ee −  

may be considered to have some information as to the extent 

of spread of error samples. Based on the fact that entropy is 

defined as a measure of how evenly energy is spread or how 

far apart the positions of components of a system are, this 

information of error-sample gap )( ij ee −  can be considered 

as being related with error entropy. Through the 

minimization of  )](),([ eefED E δ , that is, the minimization 

of ∫ deefE )(2 , the error gap ijij eee −=
, in  kA becomes 

zero so that the error samples are forced to come close to 

each other. This indicates that  kA  contributes to narrowing 

the gap between error samples, though it is uncertain where 

the error samples are heading. 

Since the kB  in (5) plays in reverse direction of  kA as 

in the minimization of )0(2 Ef−  of )](),([ eefED E δ , that 

is, in the maximization of )0(2 Ef , the error sample ie  in 

(7) is forced to be concentrated on zero. Now it becomes 

certain where the error samples are heading due to kB . 

In short,  kA is involved in minimization of spreading of 

error samples and kB  takes part in maximization of 

error-sample concentration on zero. From this point of view, 

we may regard that kB  plays a role of lowering minimum 

MSE and  kA is related with lowering misadjustment or 

fluctuation of minimum MSE. 

Similar to the above analysis of error gap, the term 

)( ij XX −  in  kA means a distance between the two input 

vector iX  and jX  in the input vector space. Letting ij ,X  

be the input pair )( ij XX − , the term ij ,X  may be 

considered to have some information about the extent of 

spread of input vectors. That can have us refer to ij ,X as 

input gap that may also be related with input entropy. Then, 

 kA can be rewritten as 

 kA ∑ ∑
+−= +−=

=
k

Nki

k

Nkj

ije
N 1 1

,222

1

σ

ijijeG
,,2

)( X⋅⋅ σ .                              (9)
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We observe that the gradient  kA in (5) and (6) is very 

similar to kk
k e
e

X
W

2
2

−=
∂
∂

 in (1) in the aspect of error and 

input terms. It can be noticed that  kA comprises summations 

of error-gap values and input-gap vectors while the LMS has 

just an error and an input vector.  This observation gives us 

an insight that ke of MSE criterion can be corresponding to 

error gap kje , , and kX  of MSE criterion can be to 

kjkjeG
,,2

)( Xσ  as a modified input-gap vector. This 

modified input kjkjeG
,,2

)( Xσ  in  kA is actually magnitude 

controlled by kernelled error-gap, so that it will be referred 

to in this paper as an input controlled by kernelled error-gap 

(ICKEG). 

ICKEG

kj ,X = kjkjσ
eG

,,2
)( X .                      (10)

In an element expression,

)-)(()(
,2,,2, kjkjkjkj

ICKEE

kj xxeGxeGx σσ ==      (11)

Then,  kA becomes  

 kA
ICKEG

ji

k

Nki

k

Nkj

ije
N

,

1 1

,222

1
X∑ ∑

+−= +−=

=
σ .              (12)

On the other hand, the term kkσ eG X)( in (7) can be 

viewed as a modified input which is controlled by kernelled 

error. Similar to (10), this modified input in kB will be 

referred to as ICKE (input controlled by kernelled error).

  kkσ

ICKE

k eG XX )(= .                        (13)

Then, kB  becomes  

=kB ∑
+−=

⋅⋅=
∂

∂ k

Nki

iii

k

E eGe
N

f

1

2
)(

2)0(
2 X

W
σσ     

     ∑
+−=

⋅=
k

Nki

ICKE

iie
N 1

2

2
X

σ .                      (14)

We can observe that the weight perturbation k -
1+

W

kMEDkMEDk BμAμ   - +=W  in (8) contains )(
,2 kjσ

eG  and 

)( kσ eG  in ICKEG of  kA and ICKE of kB , respectively. 

This implies that large error-gap values or large error 

samples induced from impulsive noise can be transformed to 

significantly mitigated values through the Gaussian kernel. 

Therefore the perturbation becomes small even when the 

error-gap values or error samples are very large as well as 

small. So we can anticipate that the MED algorithm (8) has 

very low weight perturbation in impulsive noise environment. 

4. POWER ESTIMATION OF 

MODIFIED INPUT FOR 

NORMALIZATION

For the purpose of minimizing weight perturbation

2

1+ kk WW - of the LMS algorithm in (1), the NLMS 

(normalized LMS) algorithm has been introduced where the 

step size is normalized by the averaged power of the current 

input samples ∑
−

=
−==

1

0

22
L

m

mkk

T

kk xXXX  [1].   

Applying this approach to MED we propose in this 

section to normalize the step size MEDμ  in some ways. Since 

we can see that kB is related with minimum MSE and  kA is 

associated with fluctuation of minimum MSE, the step size

MEDμ  is no longer necessary to be used commonly in  kA

and kB . This view leads us to have   

1+kW kBMEDkAMEDk BμAμ
,,

= - - W ,              (15)

and propose to normalize each step size separately. That 

is, AMEDμ
,

  is to normalized by the average power )(kPA

from
ICKEG

kj ,X  =[ ]TICKEG

kj

ICKEG

Nkj

ICKEG

Nkj xxx
,2,1,

,...,, ++  and BMEDμ
, is by 

)(kPB from ICKE

kX =[ ]TICKE

k

ICKE

Nk

ICKE

Nk xxx ,...,,
2+1+

as

 

∑ ∑
+−= +−=

==
k

Nki

k

Nkj

ICKEG

ji

MED

A
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AMED

x
N

kP

1 1

2

,

, 1)(

μμμ
,         (16)
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∑
+−=

==
k

Nki

ICKE

i

MED

B

MED
BMED

x
N

kP

1

2
, 1)(

μμμ  
.                (17)

Since the average operation ∑
+−=

k

NkiN 1

1
 maynot be effective 

in defeating the impulsive noise contained in input, the 

denominators of (16) and(17) can frequently become too 

small or too big under impulsive noise. This problem may 

cause the system to be sensitive to impulsive noise. Also the 

double summation of the denominators places a heavier 

computational burden on the algorithm. To avoid these 

problems, tracking the average power )(kPA  and )(kPB

recursively can be employed as  

)1()1()(
1

2

,∑
+−=

−+−=
k

Nkj

ICKEG

jiAA xkPkP ββ ,       (18) 

2

)1()1()( ICKE

kBB xkPkP ββ −+−=   .            (19)

The recursive estimation of average power in (18) and 

(19) can be expressed as a z-transformed system )(zR with 

input ∑
+−=

k

Nkj

ICKEG

jix
1

2

, and output power )(kPA . The system 

)(zR is applied commonly to input 
2

ICKE

kx and output power

)(kPB .

=)(zR  β
β

−
−=

z

z
zA )1()(                   (20) 

The system )(zR is a single-pole low-pass filter with its 

time constant controlled by the parameter β  )10( << β . 

The proposed algorithm with the step sizes normalized 

separately can be summarized as follows; 

 1+kW k

B

MED

k

A

MED

k B
kP

μ
A

kP

μ

)(
+

)(
=  - W ,             (21)

where )(kPA  and )(kPB  are estimated by (18) and (19), 

respectively.

5. DISCUSSION AND RESULTS

It has in section 3 been analyzed that  kA is associated 

with the role of getting error samples close to each other, 

that is, reducing fluctuation of minimum MSE and kB  is 

related with error-sample concentration on zero, that is, 

lowing the minimum MSE. To verify this analysis under the 

assumption that steady state MSE is close to minimum MSE, 

we experiment the proposed algorithm with respect to steady 

state MSE in the following 3 cases. 

Case 1) 

 1+kW kMEDk

A

MED

k BμA
kP

μ
  - +

)(
= W ,             (22)

Case  2) 

 1+kW k

B

MED

kMEDk B
kP

μ
Aμ

)(
+=   - W ,             (23)

Case  3) 

1+kW k

B

MED

k

A

MED

k B
kP

μ
A

kP

μ

)(
+

)(
=  - W .             (24)

The MED algorithm in (8) is without normalization to 

 kA nor kB . Case1 is for observing changes in fluctuation of 

steady state MSE by normalizing only AMEDμ
,

  compared to 

MED. Case 2 is to observe whether the normalization of 

BMEDμ
,  lowers the steady state MSE of MED without 

managing  kA . Finally we see if Case 3 employing AMEDμ
,

 

and BMEDμ
,  simultaneously yields both of the two 

performance enhancements; reduced fluctuation of steady 

state MSE and lowered steady state MSE. 

For the experiment, a base-band communication Casel 

with impulsive-noise added multipath fading channel is used. 

One of the equally probable 4 symbols (-3, -1, 1, 3)) is 

chosen randomly and transmitted. The transmitted symbol is 

distorted by the multipath channel +304.0=)(zH

21 304.0+903.0+ zz [8]. The channel output is contaminated 

with impulsive noise kn and then comes into the equalizer as 

input. The impulsive noise kn has the following distribution 
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function )( knf  where 2

INσ is the variance of impulses 

generated according to Poisson process with occurrence rate

ε  and 2

GNσ  is the variance of the background Gaussian 

noise [9][10].    

]
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exp[
2
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=)( 2
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GN
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GN

k σ

n

πσ

ε
nf

--
  

          ]
)(2

exp[
)(2

22

2

22
INGN

k

INGN

n

σσσσπ
ε

+
−

+
+ .     (25) 

An impulsive noise sample used in this simulation is 

described in Figure 1 where 03.0=ε , 001.022

1
== GNσσ  

and 001.50222

2
=+= INGN σσσ .  
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(그림 1) 충격성 잡음과 배경 잡음 AWGN 

(Figure 1) The impulse noise and background AWGN. 

The equalizer has an 11-tap TDL structure and the step 

size for LMS is 002.0=LMSμ . The MED and the proposed 

algorithms have common parameters valued the same as

01.0=MEDμ , 6=N , and 8.0=σ . Figure 2 shows the 

MSE learning curves for LMS, MED and Case1 proposed. 

As discussed in section 2, we observe that the learning curve 

of LMS does not drop down below -6 dB showing no ability 

to cope with impulsive noise. On the other hand, the MED 

type algorithms show rapid and stable convergence. The 

same speed of convergence between MED and Case 1 is 

observed but after convergence the Case1 shows smaller 

fluctuation of steady state MSE than the original MED 

algorithm verifying the analysis of  kA . Noticing the same 

steady state MSE, we find that  kA plays the role of pulling 

error samples close together. In Figure 3 MED and Case 2 are 

compared and shows that after convergence the Case 2 yields 

significantly lower steady state MSE than the original MED 

but has no effect on perturbation in steady state. This indicates 

that the role of kB  is related with minimum MSE and its 

power normalization produces improvement of lowering 

minimum MSE. Furthermore, Case 3 employing AMEDμ
,

  and  

BMEDμ
,  simultaneously proves to yield both of the two 

performance enhancements revealing reduced fluctuation of 

and lowered steady state MSE as depicted in Figure 4.  

0 2000 4000 6000 8000 10000 12000

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

1
0
 l
o
g
 M
S
E

Number of samples

 LMS

 MED

 NMED (Case 1)

(그림 2)  kA 정규화에 대한 MSE 수렴성능 

(Figure 2) MSE convergence performance for  kA

normalization. 
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(그림 3) kB  정규화에 대한 MSE 수렴성능 

(Figure 3) MSE convergence performance for kB

normalization . 
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(그림 4) kA 와 kB 정규화에 대한 MSE 수렴성능 

(Figure 4) MSE convergence performance for  kA

and kB  normalization. 

6. CONCLUSION

The Euclideandistance between error distribution and 

Dirac delta function as a performance criterion can be 

minimized in order to force the distribution of system error 

to come close to a shape of delta function located at zero. 

The minimization process uses its gradient, and the gradient 

has two components; one for kernel function of error-gap 

value and the other for kernel function of error. 

In this paper, we analyze that the first component  kA is 

to govern minimization of entropy error, that is, gathering 

close together error samples, and the other component kB is to 

take part in maximization of error-sample concentration on 

zero. Based on this, we propose that normalizing  kA and kB

with power of modified inputs through kernelled entropy 

errors or errors can improve their roles of reducing error-gap  

(fluctuation of steady state MSE) and error value (minimum 

MSE), respectively.

 Through simulation in multipath channel equalization 

under impulsive noise, it is revealed that  kA and kB has 

different roles of managing error samples and the proposed 

method of normalization with power of modified inputs 

through kernelled error-gap value and error sample can 

improve learning performance with reducing misadjustment 

and lowering steady state MSE in impulsive noise 

environment.  
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