NOSCO-STOMS- 53 Zdgllejo}Ad slojo] =94
Presentation Layer Framework using NOSCO-STOM

47 &
KiHyeon Kwon

2 %

g AZaA )AL Awsred oM A F2F nEAld F9 s Ty AT HzY~ 248 aRFos
Bggle] u AARE Foln FARS v S BEEd Ut 71EY qEFH A M sHeg MBS, ISP, ASPNE
Zo) 23YE 7k 71&o)A2E Shuts, JSFUJava Server Faces), Spiing MVC 22 539 A #lo|x] A = YJ¥=27t A
th o]E WPHE 7] thE § EloiWeb Tie) A2 B9 e AT} Ty AE ol vl2YA 2AS 4dA FEdkAle
231 gk B RqxE Ty Aeoldst uizls 2ag gy Relgy|ols Ty elan niavx 235 B
2 APk Axd B A2 AXIEE /MLsn A2E 53 M¥ HeolAg HI3r] AT Ae el (containenE 7
stk 223 DOM E2E 7N Helohddl Fgste] Ty Adolde a&F0 R 23 ¢ IR JFch L&, 7|
W 3 7S S8 Yo Holx A HIVE HAS Adste Al&gE ML

Abstract

One of the most important factor while developing web application is to separate presentation and business logic lowering the
maintenance cost. There are various web application development tools mainly categorized as script based such os Sendet, JSP,
ASP.NET techniques and dynamic server page development frameworks such as Struts, JSF (Java Server Faces). Spring MVC etc.
These fools provide web tier processing solution but not the complete separation of presentation and business logic. In this paper,
we developed custom fag components that separate presentation and business logic, 1o process them we also developed
container. In addition, DOM free is applied o the developed container o manage the presentation effectively.

= Keyword : DOM, Dynomic Server Page, Presentation Framework

[2], Spring MVC [3]. Apart from these, there
are other many project under development or
developed [4-6].

1. Introduction

Web has been playing an important role as

an interface for all web application since the
development of Internet, hence becoming an
key factor for the web application’s success
both in terms of maintainability and popularity.
Web application development is basically cate-
gorized as script based server page development
techniques such as ASP, JSP, PHP etc. and
web application development framework techni-
ques like Struts [1], JSF (Jave Server Faces)

* A5 AANgn AARRBNTER zus
anyjava@empal.com
[2006/07/05 T3 - 2006/07/11 4A} - 2006/09/05 4IAMEE]

In script based server page development tech-
niques, dynamic business logic code (ex. Java)
and presentation logic (ex. HMTL) are compli-
catedly intermixed or contains the custom tags
which are heterogeneous with design page code.
These
maintainability. And the structural programming
becomes difficult in script programming due to

cause problem for debugging and

its sequential execution and output nature.
The framework based techniques like Struts,
JSF, Spring MVC are based on MVC (Model

8= Qe HEEE| (TH 63)

11



NOSCO-STOME &8t ZajHE o4 2ol Zajelg

View Controller) Model 2. These techniques are
developed to obtain the goal of separation of
business and presentation logic, but lack the
completeness.

ASP.NET’s code behind method has opted
new processing method, rather than following
these kinds of old script based techniques. It
uses DOM (Document Object Model) based
code behind techniques improving server side
development and maintainability with the sepa-
ration of design and program code. But in case
of Java, though many secure technologies like
Velocity [8], Java Server Faces etc. are devel-
oped, they still lack the complete separation in-
stincts since they are based on script based
processing techniques like JSP.

In this paper, we have developed dynamic
server page NOSCO-STOM based on DOM
Model’s code behind techniques. First, we de-
veloped custom tag components that process the
separation of presentation and business logic.
Second, container was developed for processing
new dynamic server page. Third, DOM tree is
applied to the developed container to manage
the presentation effectively.

Section 2 outlines the related works and their
pros and cons. Section 3 explains the proposed
architecture and its design. We have presented
implementation in section 4. Finally, we have
compared our architecture with other frame-
works in section 5 and summarized the con-

clusions in section 6.

2. Related Works and their pro-
blems

We discuss current available dynamic server
page techniques and their methods of service,

speciality and problems they are facing.

2.1. Problems of Script language

The script based server page techniques like
Serviet, ISP, ASP, PHP etc. are presently avail-
able as web application development techniques.
In these script based techniques, dynamic busi-
ness logic code (ex. Java) and presentation log-
ic (ex. HMTL) are complicatedly intermixed or
contains the custom tags which are heteroge-
neous with design page code. For example, in
case of ISP, dynamic business logic code (ex.
Java) and presentation (ex. HTML) are compli-
catedly intermixed together. In this case, the
page based coding and debugging becomes
harder. And, the structural programming hardly
becomes possible.

2.2. Problems of Web Application Frame-
work

Struts[1] has made positioned itself as a web
application development model based on HTML
tag library. But, it takes more time while writ-
ing ActionForms and lacks the ability to test.
Spring MVC [3] owns many similarity while
handling view with JSP/JISTL, Tiles, Velocity,
FreeMarker, Excel, XSL, PDF which is its
weakness. WebWork [9] lacks validation of cli-
ent side content processing though it has simple
structure and extendibility. Tapestry [10] is sim-
ple in terms of structure due to HTML tem-
plates making ease to learn. Though JSF (Java
Server Faces) [2,10), a J2EE [11] standard, pro-
vides easy development framework with detail
navigation, but the connection is not that much
easy due to excessive inclusion of JSP tag.

12

2006. 12.



NOSCO-STOME &3 Za|FEjol4d ojof =gl

2.3 Design Strategies for Web Tier Ser-
vice

We adopted following strategies to solve the
problems seen in sub section 2.3.

(1) Work on Servlet basis. NOSCO also gets
inheritance from Servlet and works on
Servlet basis like JSP.

(2) Remove the additional programming from
design page code. It is necessary not to
include server-side programming code, which
is required for dynamic content creation,
directly in design page code (Code Behind).

(3) Provide dynamic content creation code
development framework. It provides API
(STOM API) for creating dynamic content
and accessing design page code.

(4) Parse the page content once at the time of
first request and manage the part that
requires dynamic processing as STOM tree
object. The program code is executed in
similar style as Servlet or Applet managing
proper lifecycle (NOSCO bean). STOM tree
object for dynamic processing is accessed
as STOM API from developer implemented
“NOSCO bean” and dynamic content is

NOSCO-STOM

abstract classes for JSP, Servlet and Java-

created. provides  the
bean making development and extension
simple.

3. NOSCO-STOM Architecture

NOSCO (No ISP in COHALS) engine in-
ternally uses COHALS (Component Of Html
And Logic Separation) components. COHALS
component is used to support HTML Table tag

in terms of JSTL (Java server pages Standard
Tag Library). STOM (Simple Tag based docu-
ment object Model) is the DOM tree based
page processing technique(method) and is used
in combination with NOSCO, hence becoming
a new dynamic server page framework where
NOSCO embeds STOM techniques.

3.1. Technology Building Blocks

JavaServer Pages(JSP™) NOSCO™ - STOM™

{Fig 1> NOSCO-STOM Building Blocks

The building blocks for NOSCO-STOM is as
in Fig. 1. Like JSP, it is also Servlet based
technique and resides on the top together along
with JSP, followed by Java Servlets. Then,
there are J2EE (Java 2 Enterprise Edition) and
J2SE (Java2 Standard Edition).

3.2. NOSCO Container

elloWorld

HTTP Response
D —

HTTP Se

wlservietH

Dispatch request__ R i_

- : [?)spatch response

[

(Fig 2) NOSCO Container (Engine)

3= olell B (72 63)

13



NOSCO-STOME &8 =3

|ZEfol4 alojof =Zajelgy

NOSCO Container plays vital role in
NOSCO-STOM architecture. It provides serv-
ices being included in Servlet engine like JSP
engine, though JSP comes along with Serviet as a
single product, but NOSCO can come together
or can be included used in all Servlet engines.
As in Fig. 2, Servlet and JSP are called as
[servlet/HelloWorld and /HelloWorld.jsp respec-
tively where as NOSCO is as fHelloWorld.nsc.
The following subsection 3.3 elaborates the life
cycle of NOSCO and section 3.4 contains the

processing procedure.

3.3. NOSCO Life Cycle

In NOSCO, Servlet and JSP are initialized
for the initial request. after which can be used
directly and the execution stops at reloading
time. But JSP needs to be loaded, compiled
and initialized for the initial request. Hence
NOSCO life cycle provides service connecting
NOSCO and STOM tightty, NOSCO file is up-
loaded according to the request and STOM is
generated to provide the service. It serves in-

/\\
- ™

—» " nosco Joaded? . f - —
5 L-b Load nosco File | — Parsing

Servlet Request
A R R

stantly if NOSCO is already loaded, otherwise
it needs to load NOSCO file, parse the web
page and saves in STOM before serving.
NOSCO bean is destroyed at the end of bean
scope time.

3.4. NOSCO-STOM Execution Procedure

The execution sequence of NOSCO is shown
in the Fig. 4.

(1) If the request URL pattern is *.nsc, then
request comes through “NOSCO Servlet”.

(2) "NOSCO Servlet” analyzes request URL
and makes NOSCO engine to execute the
related URL.

(3) "NOSCO engine” gets the STOM tree of
the page related to the request from STOM
storage.

(4) If STOM tree couldn’t be obtained from
“STOM storage”, the request is sent to
“page parser” to parse the requested page.

(4-1) "Page parse” looks for the requested page

in local file system and parse it.

T,

Page to STOM ":

;'ii:

e S

lnstance

‘ destroy()

(Fig. 3> NOSCO Life Cycle

14

2006. 12.



NOSCO-STOME &% Za|HE|olM oo =zl

<chs:nsc xmlns:chs="http://www.cohals.co.kr/nosco/2006/XMLSchema™>
<chs:bean className="nsc.examples.NoscoMetaFileCHSB"
scope="BEAN_SESSION" session="true">
<chs:param name="foo2" value="bar2"/>
<chs:param name="fool" value="barl"/>
</chs:bean>
<chs:page mimeType="text/html;charset=EUC-KR" chsIdName="chsid"
pageCES="EUC-KR" path="NoscoMetaFile.html">
<chs:trace name="header" value="REQUEST"/>
<chs:trace name="parameter" value="NONE"/>
<chs:trace name="stom tree" value="BOTH"/>

</chs:page>
</chs:nsc>

{Listing 1> NOSCO Meta [nformation

(4-2) "Page parse” creates the part which is
going
content as STOM tree object.

(4-3) "Page parser” saves the created STOM
tree object in STOM storage.

(5) “NOSCO Engine” finds the NOSCO bean

that processes the page dynamically and

to be changed among parsed

starts managing the life cycle of related
bean. And, the related bean contains the
“STOM tree”
bean.

(6) "NOSCO Bean” makes dynamic content
using the allocated “STOM tree” object.

object that processes the

3.5. NOSCO Meta Information

E.. s P — ]l
] g

{Fig 4> Execution Procedure of NOSCO

If the page developed by web page designer
is the tag based file that included HTML file,
most of the job can be done. As in the Listing.
1, the meta information necessary to execute
NOSCO is inserted in the file that has “nsc”
extension. This work is handled by contents
developer.

Listing 1. shows the meta information for ex-
ecuting NOSCO and has two
<chs:bean/> and <chs:page/> .

<chs:bearn/> contains the property details of

sections

dynamic content processing Java class (NOSCO
bean) like className property, scope property,
session property. The scope property is similar
to JSP’s <jsp:useBean/> tag’s scope property
and the session resembles with session property
of JSP page directive. The child tag <chs:par-
am/> can be also used where the name, value
properties get values anytime from the refer-
enced NOSCO bean.

<chs:page/> contains the mimeType proper-
ties of the page. The page’s file encoding is in-
serted in pageCES. If the meta information is
in “nsc” file, then the path property contains
the path of that file. <chs:trace/> eases debug-

32 olEf 2 (72 63)

15



NOSCO-STOME &gt Za|HEolM aojo] Zafeled

. ging at the tirne of development.

Meta information defines the contents in any
page that requires dynamic processing where as
the dynamic content developer does using tags.
The tag’s property is set as chsid, an unique
value in that page.

In case of Listing 2, the whole <BODY/> is
defined as dynamic processing part and hence
got stomAssigament as chsid value.

<HTML>
<BODY chsid="stomAssignment">
<center><BOOK LIST</center>
<table>
<tr>
<td>BOOK</td>
<td>AUTHOR</td>
</tr>
<tr>
<td>Hobbit</td>
<td>Tolkien, John Ronald Reuel<.td>
</tr>
</table>
</BODY>
</HTML>

(Listing 2) HMTL Assigning of Dynamic Pro-
cessing Part

<HTML>
<BODY chsid="stomAssigrment™>
<center>BO OK LIST</center>

<td>Hobbit</d>

<td>Tolkien, John Ronald Reuel</td>
<ftr>
[<ftable>

</BODY>
</HTML>

<tahle> O 2com nzc stom, Frut . ICF.FT

<> PR e sleoon nie sue Tath
AT o rvewm.mse. stom. Temr._(oR1) f
<1d>BO OK</td> /’1 \L, i com .o A .

T 0 2com. noe. etom. Toxt. . [CKLF] !

<fHd> <flr> )
<1d>AUTHOR</1d></tx Basnsi g & STOM Obj ’Cfﬂ 1 2 540.com nLC o AN |
<hr> Tree Cr'eneralid " O Jeony. ave. otam. Text . [CRLFY ;

3.6. Transformation of nsc file into STOM
Tree

The Fig. 5 shows how the HTML page de-
fined parts are transformed into rectangular tree
browser using NOSCO-STOM And, it also
shows that HTML table are parsed and catego-
rized into as tree structure. Page’s Tag compo-
nent is objectized as com.nsc.stom.Tag where as
text elements are into com.nsc.stom.Text. The
<table/>, <tr/> and <td/> components are ob-
jectized as com.nsc.stom.Table, Row, Cell class
type making the tag’s property easy to control.

3.7. Implementation of NOSCO bean that
references STOM Tree

STOM tree is referenced by NOSCO bean.
As in Listing 3, NOSCO bean is coded and
scope of bean defined by scope property (re-
quest, session, application) of meta information.
When the bean object is first called, init() is
called where start() is called if that bean is
called next time followed by paging() method.

BYOM Tree - Selure Paynn

| o String, . 4L ICRLF)

| PBUXBOLY com.nox. story. Tag chaud “stomAswgnmaont™
O Peor noc.slom Toul. [CRF}
£ teeentonce e stom Taad

Brager wais den ot i
Q Beers. pac. stom. Yot Hiit})

D Zeew. i s, Taat . ICALF) i

B ¥ter it tiom Cely l
O Geom. v, otem. Toxr.. Toxon Joba g | !

1 Srom nne. stomw Text . [CRLF} j

C._8itom ppe story Teuf CRFY

 seam. ave. stops. Taxt. . [CRLF]
1T Wwg. . [CRIPTORITACS

i
i
|
i
i

{Fig. BY HTML and STOM Tree

16

2006. 12.



NOSCO-STOMEZ S8 Za|Hejold olo] =gy

//8ttpCohalsBEAN ..
public class TestCHSB extends com.nsc.fx.HttpCohalsBEAN {
//start ()
public void paging(com.nsc.fx.Nodelist nodes) throws com.nsc.fx.CohalsException {
com.nsc.stom.Tag stomAssignment=
(com.nsc.stom.Tag) nodes.getNode (*stomAssignment") ;
//..to do list.
}
public void init () throws com.nsc.fx.CohalsException{};
public void start() throws com.nsc.fx.CohalsException{};
public void stop() throws com.nsc.fx.CohalsException{};
public void destroy() throws com.nsc.fx.CohalsException{};

(Listing 3> NOSCO bean Code

1

(TG Troe - Tl Bl !

| .

R ! e o

I CVCROBY com sxe stane Tagiehsd: “.vlcnl\sg,gnar«r’b\ ’ST OM Object Access

| Qieem axg stawr Tesl [ FFTTT ] Tag stomAssignment = (Tag)nodes. getNode(stam Assizument™),
At e s m e T

-
w:; é?/,\"* stomA ssignmentgetChild(3);

| O %com pac store Fesd  [TFLF}
[er R H s e Tabi T

! @ oom asc stwm fext  [LFIFL H
! £ Lt B h & X i -
o ! (Row)table getChild(3),

G ‘Fom mac doa feamr WRCG) , //Same Result Code -> Row row = table getRow(1);

[ ‘», e x,u Ry i
3 ¢ & )
g
B mm nae stow Fexp  [LALF] |

Cell cell = row.getChild(1),
#/3ame Rsult Code -> row.getCell(D);

Q Tour o sfors Fexd ATRUF
[t an - . J i
O ‘e nyc stor et . i Vo

0 tepem p3g stom Texs [0

[ -

0 pom nse storm Foxt LR

I*
|
i " :
© eom pae stom Frad b I b
(.

Texttat = (Texieell getChild(();/ "Hobbit" String...
ixt.replace( "The Lord of the Rings” );# Change String ..

Q iram ase stom fext |yl
Iat»‘:m femfloamn

— S

(Fig 6> Dynamic Contents Processing using STOM tree

This method processes the dynamic contents.
stop() called after completion of paging(). This
is almost is similar to Serviet and Applet.

Fig. 6 shows how dynamic contents are proc-
essed in paging() using STOM tree. It shows
how, the original page’s "Hobbit” string is dis-
placed by “The Lord of Rings”.

4. Implementation of NOSCO-STOM
Management Tool

NOSCO-STOM provides management tool for
easing development of NOSCO. As in Fig. 7,
the left side contains the directory tree. The di-

rectory gets link if it contains meta information
file inside and after clicking on the directory we
can get the list of those files as in Fig. 8.

HOSCO™ - STOM™ Muaagomunt Tout

wo Tese s EE e

worsil [CORFLEANERT o0 (W exazpibs Parise ﬂmﬁ RRVVERL CharssteE
ettt TR TWE AR RIS [ERTRRT A

(R T (e v [FEAN TEUE ™ (Ut s
ou NSRRI [ SR NoRa (CARIERN T [GTRED GNREE

s [ROTRTEW (R e [EANTEE [ R
i e R (e

o T R DWR (R ey Nty PEAN FERTES " [/ated (OvanE

A2 H g e B ek ey ey

({Fig 7) NOSCO-STOM Management Tool

512 SlEfY Al (72 63)

17



NOSCO-STOME &8t

= HEjolA #olo] Zajlg

AR Ko e NN I
HOSCEW - STOM™ Masagamait Tool

TomctsyETret ooy

B e o Nan (REECOE R PRTRRERGRS
wean sl IEAN RSt 5}
Bt: e = B
& :wm [ 3 |
Quar Clzmgen e wno
- [ [
Pussastey i, T =

- [

s
bl Bl T

LI ign = I E

{Fig 8> NOSCO Meta Information View

It helps developer to modify meta infor-
mation. Clicking on “Write” and designating the
page in the server, NOSCO meta information
can be input as in Fig. 7.

Clicking the "Run Editor” in figure 8. pops
up simple editor page like in Fig. 9. The devel-
oper can editor the dynamic processing part
from that editor page and can simultaneously
view the STOM tree through Tree Browser.
And, clicking on “Run NOSCO” in Fig. 8, the
developer can execute the NOSCO file too
where as "Generate Bean” makes the download
of .java template that processes the page which

(Table 1) Property Comparison of Key Frameworks

anw-xmnmL,

O Sty RO CRLE| HEARCHLEL,

Q Seomase spvm Teat SCRUP)
TR et st Romr
B Geovs psé stam Taxt FCRLFY
[=30: SRR Y

{Fig 9> NOSCO Page Editor

is created by using "NOSCO meta information”
and designated STOM tree.

5. Performance Evaluation of
NOSCO

We have compared performance of NOSCO-
STOM architecture with some of mostly used
current tools. And the table 1. shows the results
which clearly proved this techniques has upper
hand in handling dynamic server pages. .

In Table 1 we presented the key differences
between our proposed architecture NOSCO-

Tool
Attribute
Struts Spring MVC WebWork Tapestry NOsCOSTOM
. . based on custom tag
. {based on HIML | based on tag |tag library based, easy| conirib:Table
Role Separation tag Library library to customize component component, separates

completely

Complexity & | ActionForms are |Complex since lots| Simple structure and

uses DOM and lessen the

d t very complexity and eases the

Maintainability pain XML, JSP code ease to extend conceptual maintainability
Testability gzi;r’;ﬁ tcclz“sz easy tﬁw:dnsg Wih | sy testing with mocks|  difficult to test Smf: tslil:fe m;ﬁd&
Validation ussa;ic(;r;:(r)\ron usf,alcggz‘rm immature validation | robust validation robust

18 2006. 12.



NOSCO-STOME 3 =ajHe|olH 200 =29

STOM and other present day frameworks. It
shows that NOSCO-STOM has certain benefits
over the other frameworks in terms of role sep-
aration, complexity and maintainability, testabil-
ity and validation of clients.

6. Conclusion

Many server side programs were developed
to provide the server-side capability to web
application. Although they played a major role
in the explosion of Internet, their performance,
scalability and usability issues make them less
than the optimal solution. In this paper, we
have presented a dynamic content geperation
code development framework based on page
processing technique NOSCO bean and DOM
tree model. This system also provided better
and easier development of web application.
NOSCO-STOM framework doesn’t include di-
rectly server side program code (Java or custom
tag) necessary for generating dynamic contents,
rather it links the original design page and dy-
namic contents generation program code to ex-
ecute readied dynamic contents generation pro-
gram according to the page execution request.

Since the looks of first page doesn’t change,
it eases the maintainability, and the under-
standing between designer and programmer. In
addition, programmer can focus only on soft-
ware development and the development is pos-
sible normal Java environment. MVC model2
frameworks that uses JSP as page processing
techniques normally owns complex processing
method, but NOSCO-STOM provides simple,
and easy development of web application.
Hence, it completely separates the responsibility
and speciality of designer and developer sim-

plifying the development and lessening its de-
velopment period.

References

[1] Apache Struts project official site. Available
at hitp://struts.apache.orgfindex.html, 2006.

[2] H. Mahmoud,
cations with Java Server Faces”, Available
at htip;//java.sun.com/developer./technical Articles/
GUI/JavaServerFaces, 2004

3] Javid Jamae, ”“Simplify Your Web App

Spring MVC
Framework”, Available at http://fwww.devx.
com/Java/Article/22134/1954, October 11,
2004.

[4]1 A. Saimi, T. Syomura, H. Suganuma, L

"Developing Web Appli-

Development Using the

Ishida, “Presentation Layer Framework of
Web Application Systems with Server-Side
Java Technology”, Computer Software and
Applications Conference, 473-478, October,
2000.

{51 M. Jacyntho, D. Schwabe, G. Rossi, "A
Software Architecture for Structuring Com-
plex Web Applications”, Journal of Web
Engineering, 37-60, 2002.

[6] N. Al-Darwish, "PageGen : An Effective
Scheme for Dynamic Generation of Web
Pages,” Vol. 45, Issue 10, 15 July,
651~662, 2003.

[71 "ASP.NET Code Behind Model Overview,”
Available at http://support.microsoft.com /de
fault.aspx?scid=kb;en-us;303247, Jan, 2004.

[8] “Velocity”, Available at http://jakarta.apache.
org/velocityfindex.html, 2006.

[9] Neal Ford, “Art of Java Web development:
WebWork”, Available at http:/fwww. javaworld.
com/javaworld/jw-03-2004/jw-0329-webwork

Bt QIR HEES| (7 65)

19



NOSCO-STOME &8t ZafHE/o|H aojol Za|ely

_p-html, March 29, 2003.

[10] Phil Zoio, “JavaServer Faces vs Tapestry :
A Head-to-Head Comparison”, Available at
http://www.theserverside.com/tt/articles/artic
le.tss?1=JSFTapestry, August 2005.

[11] Bill Shannon, “Java 2 Platform, Enterprise
Edition Specification Version: 1.2”, Availa-
ble at http://java.sun.com/javaee, Dec. 1999,

{12] S. H. Cheon, G. H. Kweon, H. J. Choi,
“Developing an Automatic Component Crea-
ting System in Distributed Environment”,
Journal of the Korea Digital Content, Vol.
2, 2001.

[13] S. Chung, Y. S. Lee, "Modeling Web
applications using Java and XML related
technologies”, Proceedings of the 36th
Annual Hawaii International Conference
on System Science, January, 2003,

{14] V. Apte, T. Hansen, P. Reeser, "Perfor-
mance comparison of dynamic web plat-
forms”, Computer Communications, Vol
26, Issue 8, 888~898, 20 May, 2003.

{15] R. Jan, C. Lin, M. Chem, ”"An optimi-
zation model for Web content adaptation”,
Computer Networks, Vol. 50, Issue 7,
953~965, 15 May 2006.

[16] W. Li, O. Po, W. Hsiung, K. S. Candan,
D. Agrawal, “Freshness-driven adaptive
caching for dynamic content Web sites”,
Data & Knowledge Engineering, Vol. 47,
Issue 2, 269~296, November 2003.

(171 C. Leaguea, "MetaOCaml server pages:
Web publishing as staged computation”,
Science of Computer Programming, Vol.
62, Issue 1, 66~84, September 2006.

OMALNO

3 7] 8i(KiHyeon Kwon)

E-mail : anyjava@empal.com

1993 Zdoista AapArete E-)(0]8AY

19959 Zeohgtal skl AFE TR EU(013H4Ah
200013 Aot et AFE AT Ee1gERD
1996~2002 e el PR} wa

2002~@A Zeuistn AAYRFAFER w5
AR} : UEg0], guvi=azES], RAMMUIEY S

20

20086. 12.



