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A Hybrid Estimation of Distribution Algorithm 
with Differential Evolution based on 

Self-adaptive Strategy
☆

Debin Fan1,2       Jaewan Lee2*1)

ABSTRACT

Estimation of distribution algorithm (EDA) is a popular stochastic metaheuristic algorithm. EDA has been widely utilized in various 

optimization problems. However, it has been shown that the diversity of the population gradually decreases during the iterations, which 

makes EDA easily lead to premature convergence. This article introduces a hybrid estimation of distribution algorithm (EDA) with 

differential evolution (DE) based on self-adaptive strategy, namely HEDADE-SA. Firstly, an alternative probability model is used in 

sampling to improve population diversity. Secondly, the proposed algorithm is combined with DE, and a self-adaptive strategy is 

adopted to improve the convergence speed of the algorithm. Finally, twenty-five benchmark problems are conducted to verify the 

performance of HEDADE-SA. Experimental results indicate that HEDADE-SA is a feasible and effective algorithm.

☞ keyword : Hybrid algorithm, Estimation of Distribution, Differential Evolution, Self-adaptive Strategy

1. Introduction 

Continuous optimization problems appear in most fields of 

science and engineering, which have been received 

considerable attention. Their objective functions have the 

characteristics of continuity, noise, and other features. 

Therefore, it is rather difficult to solve by common methods; 

some metaheuristic algorithms like evolutionary algorithms 

(EAs) would be taken into account. Classical EAs, such as 

genetic algorithm (GA), ant colony optimization (ACO), 

particle swarm optimization (PSO), artificial bee colony 

(ABC), have been used to deal with these problems [1-3].

EDA first proposed by Mühlenbein and Paass [4], which 

has been successfully used in a set of academic and practical 

applications for optimization. For example, Liu et al. [5] 

present a copula-based EDA (cEDA) for flow-shop 
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scheduling problem. Dong et al. [6] introduced a latent 

space-based EDA for large-scale global problems (LSGOs). 

Yang et al. [7] utilized distribution estimation and niching to 

implement a multimodal EDA for multimodal problems. For 

constrained problems, Gao et al. [8] proposed an enhanced 

EDA by extreme elitism selection technique, which indicates 

better performance compared with other EDAs.

EDA generates offspring based on global information 

while ignoring location information of the individual. Thus 

this method can improve the population diversity. However, 

it is easy to encounter the problem of premature convergence 

[9]. In addition, since the sample size is fixed, the calculation 

of probability distribution takes more time [9].

Differential evolution (DE) is another famous stochastic 

metaheuristics algorithm of EA, which was first introduced 

by Stron and Price [10] and had strong local search ability 

[11]. To solve the above issues, the hybridization of EDA 

and DE algorithms has attracted more and more attention and 

achieved superior performance. For example, Sun et al. [12] 

firstly present a combination of DE and EDA operator termed 

DE/EDA. Shao et al. [13] proposed a hybrid DE/EDA with 

adaptive incremental learning strategy. Inspired by literature 

[12], Dong et al. [14] present a hybrid mechanism of DE and 

EDA with local search strategy, named as EDA/DE-EIG. 
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Fang et al. [15] introduced a hybridization of DE and EDA 

termed DE/GM, which can provide a Gaussian distribution 

probabilistic model of EDA and crossover/mutation operators 

of DE to generate offspring solutions with information fusion.

Although hybridization technique does increase the 

performance of the algorithm, it still cannot avoid the 

blindness and randomness of individual evolution. In the past 

few years, self-adaptive strategy in EAs has aroused great 

attention, and various self-adaptive strategies have been 

introduced. For example, Wang et al. [16] introduced a 

self-adaptive ensemble DE algorithm (SAEDE), in which 

their relevant parameters were self-adaptive and ensemble. 

Liu et al. [17] present a self-adaptive bare-bones DE with 

bi-mutation strategy (SMGBDE) to solve the blindness of 

mutation strategy. Wang et al. [18] introduced a method 

combined by self-adaptive mutation DE and PSO (DEPSO). 

These works indicate that self-adaptive strategy can 

effectively reduce the blindness and randomness of individual 

evolution and improve the convergence speed of the 

algorithm.

Inspired by the above considerations, we design a hybrid 

EDA with DE based on self-adaptive strategy (HEDADE-SA) 

in this article. The proposed HEDADE-SA utilizes the 

self-adaptive strategy to adjust the proportion of EDA and 

DE operators. In the early stage of the algorithm, 

HEDADE-SA can use more EDA operator for exploring. In 

the later stage, HEDADE-SA can use more DE operator to 

exploit. Moreover, an alternative probability model for 

sampling is used in HEDADE-SA. Twenty-five test problems 

of CEC2005 are used to validate the performance of 

HEDADE-SA.

The remaining article is structured as follows: Section 2 

shows a description of EDA and DE. Then, section 3 is 

devoted to HEDADE-SA. In Section 4, we conduct an 

experimental analysis of HEDADE-SA. Finally, Section 5 

sums up this article. 

2. Description of Algorithms

2.1 Estimation of Distribution Algorithm

EDA [4] is a kind of stochastic metaheuristics algorithm. 

Compared with classical GA, EDA has no crossover or 

mutation. It uses global statistical information to learn and 

sample, and then builds a probabilistic model and obtains a 

promising solution.

The basic steps of EDA are given as follows.

Step 1: Population initialization.

Step 2: Calculating and evaluating the fitness of 

individuals.

Step 3: Selecting m elite individuals from the population.

Step 4: Generating the probabilistic model according to the 

elite population. 

Step 5: Sampling to create a new population by the 

probabilistic model from step 4.

Step 6: If algorithm met the termination criterion, output 

the global optimum; otherwise, goto Step 2.

The flowcharts of GA and EDA are as shown in Figure 

1.

Population initialization

Select operation

Crossover operation

Mutation operation

New Population

GA

Population initialization

Select operation

Build a probabilistic model

Sample new individuals

New Population

EDA

(Figure 1) The flowchats of GA and EDA

2.2 Differential Evolution

DE [10] is another kind of population-based random 

search method, which was proposed in 1995.

The details of classical DE are shown as follows.

Step 1. Population Initialization.

DE usually uses a randomly generated method to initialize 

the population, which is shown as follows:
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, , , ,(0) (0,1) ( )L U L
i j i j i j i jx x rand x x= + ⋅ −        (1)  

where i = 1,2,…, NP,  j = 1,2,…, D. ,
U
i jx  indicates the 

upper constraint, and ,
L
i jx  indicates the lower constraint.

Step 2. Mutation.

  The frequently utilized mutation strategies are shown as 

follows：

  DE/rand/1:

1 2 3
( ) ( ) ( ( ) ( ))i r r rV t X t F X t X t= + ⋅ −     (2)

  DE/best/1:

1 2
( ) ( ) ( ( ) ( ))i best r rV t X t F X t X t= + ⋅ −     (3)

  DE/current-to-best/1: 

1 2
( ) ( ) ( ( ) ( )) ( ( ) ( ))i i best i r rV t X t F X t X t F X t X t= + ⋅ − + ⋅ −  (4)

  DE/rand/2:

1 2 3 4 5
( ) ( ) ( ( ) ( )) ( ( ) ( ))i r r r r rV t X t F X t X t F X t X t= + ⋅ − + ⋅ −  (5)

  DE/best/2:

1 2 3 4
( ) ( ) ( ( ) ( )) ( ( ) ( ))i best r r r rV t X t F X t X t F X t X t= + ⋅ − + ⋅ −  (6)

where t denotes the number of evolution, F is the scaling 

factor, r1, r2, r3, r4, r5 are different integers within the range 

[1, NP] and 1 2 3 4 5r r r r r i≠ ≠ ≠ ≠ ≠ , ( )bestX t  denotes the 

best vector.

  Step 3. Crossover.

  DE usually uses binomial crossover to produce a trial 

vector ( )iU t , which is shown in Eq. (7).

,

,
,

( ),          
( )

 ( ),                                
i j rand

i j
i j

v t if rand CR or j j
u t

x t otherwise
≤ == 

  (7)

where [ ]0,1CR∈  denotes the crossover probability and  jrand 

is a random selected integer in [1, D], which is ensured that 

not less than one element of the target vector ( )iX t  can 

inherit from the mutation vector ( )iV t .

  Step 4. Selection.

  DE uses the greedy strategy to select better individual 

according to the fitness of ( )iU t  and ( )iX t . The selection 

operation is shown in Eq. (8): 

( ),         ( ( )) ( ( ))
( 1)

 X ( ),                             
i i i

i
i

U t if f U t f X t
X t

t otherwise
≤

+ = 
  (8)

3. Hybrid Estimation of 

Distribution Algorithm with 

Differential Evolution based 

on Self-adaptive Strategy 

(HEDADE-SA)

3.1 Alternative Probability Model

The evolution of EDA is achieved by sampling according 

to a probability model. In continuous EDA, Gaussian 

distribution and Cauchy distribution are the most commonly 

used probability models [7].

Gaussian distribution, named as a normal distribution, 

random variable X of univariate Gaussian distribution denotes 

as 2( , )X N μ δ , and its density function is shown as follows:

21
( )

2
1

( ; , )
2

x

f x e
μ

δμ δ
δ π

−−
=

            (9)

where  denotes the mean of X,  denotes the standard 

deviation of X.

  Cauchy distribution is similar to Gaussian distribution, and 

its probability density function is defined in Eq. (10): 

0
20

1
( ; , )

1 ( )

f x x
x x

γ
πγ

γ

=
 −+ 
 

         (10)

where x0 denotes the location value and  denotes the scale 

value. 

  The probability model is essential because its employment 

directly impacts the quality of offspring. However, it is quite 

challenging to generate a superior offspring under only one 

probability distribution and many works adopted more than 

one probability distribution [7]. In literature [7], an alternative 

usage method of the Gaussian and Cauchy probability model 

is utilized. In other words, there is a certain probability to 

choose Gaussian or Cauchy distribution to generate offspring. 

By employing this method, the algorithms can potentially 

obtain a promising offspring successfully. The alternative 

probability model is also employed in our proposal.

  A new sampled individual of EDA can be generated in Eq. 

(11).

{ ( , ),    (0,1) 0.5
( , ),      ( ) i i i

i ii
Gaussian if rand
Cauchy otherwiseE t μ δ

μ δ
<=

   (11)
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Algorithm: HEDADE-SA

Input: 
NP: the number of population; 
SP: the self-adaptive selection probability;
NS: the number of the sample;
FEs: the number of evaluations;
MaxFEs: the maximum number of evaluations;
LRF1: the number of linear reduction factor;
LRF2: the number of linear reduction factor.

Output: 
The global optimum.

Step 1: Randomly initialize population p(t).
Step 2: Calculating and evaluating the fitness values of each 

individual.
Step 3: Calculating LRF1 according to Eq. (13).
Step 4: According to Eq. (12) to calculate SP of each individual. 
Step 5: While FEs < MaxFEs

Step 5.1: Sorting individuals in ascending order by the fitness 
values.

Step 5.2: Calculating LRF2 according to Eq. (17).
Step 5.3: Selecting NS best elite individuals for sampling 

according to Eq. (16).
Step 5.4: For i = 1 to NP
Step 5.5:   If Rand(0,1) < SP
Step 5.6:     Generating a mutant vector of EDA according 

to Eq. (11).
Step 5.7:   Else
Step 5.8:     Generating a mutant vector of DE according to 

Eq. (3).
Step 5.9:   End if
Step 5.10:  Generating a trial vector according to Eq. (7).
Step 5.11:  According to Eq. (8) to generate an offspring using 

the greedy Strategy.
Step 5.12:  FEs = FEs + 1.
Step 5.13:  Calculating LRF1 according to Eq. (13).
Step 5.14:  According to Eq. (12)  to calculate SP of each 

individual.
Step 5.15: End For
Step 5.16: Updating SP of each individual according to Eq. 

(15).
Step 6: End While

(Table 1) The framework of HEDADE-SA

3.2 Self-adaptive Strategy

The proposed HEDADE-SA utilizes EDA to improve 

global exploration capability, meanwhile uses DE/best/1 to 

increase local search capability. Inspired by literature 

[17][18], in HEDADE-SA, the selection probability SPi(t) is 

dynamically modified in each evolution and is generated as 

follows:

( ) _ ( _ _ ) * 1 ( )i iSP t SP L SP U SP L LRF t= + −   (12)

where SP_U is the maximum value of SPi(t), and SP_L is the 

minimum value of SPi(t), LRF1 is a linear reduction factor 

(LRF) as below [17]:

1 exp( ( ( )) ( ) )
1 ( )

1 exp( ( ( )) ( ) )

i gbest
i

i gbest

f X t f X
LRF t

f X t f X

− − −
=

+ − −
     (13)

The value of LRF1 is the comparison between the fitness of 

current individual f(Xi) and global best individual f(Xgbest).

Therefore, the mutation individual of the proposed 

algorithm is generated according to Eq. (14):

{
1 2

( ),                                        (0,1) ( )
( ) ( ( ) ( )),  ( ) i

i
i i

r rbest

E t if rand SP t
X t F X t X t otherwiseV t <

+ ⋅ −=
 (14)

In the early process of HEDADE-SA, the value of SPi(t) 

is bigger. The probability of randi(0,1) < SPi(t) is also very 

high, and the proposed algorithm can make more use of EDA 

for exploring. With the evolution process, the value of SPi(t) 

is smaller. Consequently, the probability of randi(0,1) < SPi(t) 

is also very low, and the proposed approach utilizes more DE 

for exploiting promising solutions. 

In order to avoid stagnation in the evolution process, an 

indicator is set to observe the update of the population. Once 

the following condition is reached, the value of SPi(t) will 

automatically reset to 0.5. Furthermore, the search space of 

the algorithm can be expanded to get rid of the stagnant 

agitation [17].

{0.5,          r
( ),  ( 1)i i

if L
SP t otherwiseSP t ≤+ =            (15)

where r is the proportion value of updating individuals, L is 

a constant from 0 to 1.

In classical EDA, the number of the sample (NS) is fixed. 

Using a fixed value for sampling will inevitably lead to 

time-consuming, which is not conducive to searching for the 

best solution. Inspired by literature [19][20], in HEDADE-SA, 

NS is adaptively changed instead of taking fixed value:

( _ ( _ _ ) * 2)NS round NS L NS U NS L LRF= + −    (16)

where NS_U is the maximum value of NS, NS_L is the 

minimum value of NS, round denotes a rounding function, 

and LRF2 is another LRF which is inspired by literature [21]:

ax
2 exp(1 )

ax 1

M FEsLRF
M FEs FEs

= −
− +       (17)

where FEs is the number of evaluations, and MaxFEs is the 

maximum value of evaluations. 

  From Eq. (17), it is easy to see that the value of LRF2 

decreases from 1 to 0. Furthermore, NS decreases from NS_U 

to NS_L according to Eq. (16).

3.3 The implementation of the proposed 

HEDADE-SA algorithm

With the above approaches, the framework of HEDADE-A 

can be described in Table 1. 
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Type Function Function Name Range fi(x*)=f_biasi

Unimodal 
functions

f1 Shifted Sphere Function [-100,100]D -450
f2 Shifted Schwefel’s Problem 1.2 [-100,100]D -450
f3 Shifted Rotated High Conditioned Elliptic Function [-100,100]D -450
f4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness [-100,100]D -450
f5 Schwefel’s Problem 2.6 with Global Optimum on Bounds [-100,100]D -310

Multimodal 
functions

f6 Shifted Rosenbrock’s Function [-100,100]D 390
f7 Shifted Rotated Griewank’s Function without Bound [0,600]D -180
f8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds [-32,32]D -140
f9 Shifted Rastrigin’s Function [-5,5]D -330
f10 Shifted Rotated Rastrigin’s Function [-5,5]D -330
f11 Shifted Rotated Weierstrass Function [-0.5,0.5]D 90
f12 Schwefel’s Problem 2.13 [-π,π]D -460

Expanded 
functions

f13 Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2) [-3,1]D -130
f14 Shifted Rotated Expanded Scaffer’s F6 [-100,100]D -300

Hybrid 
composition 

functions

f15 Hybrid Composition Function [-5,5]D 120
f16 Rotated Hybrid Composition Function [-5,5]D 120
f17 Rotated Hybrid Composition Function with Noise in Fitness [-5,5]D 120
f18 Rotated Hybrid Composition Function [-5,5]D 10

f19
Rotated Hybrid Composition Function with a Narrow Basin for the Global 
Optimum

[-5,5]D 10

f20
Rotated Hybrid Composition Function with the Global Optimum on the 
Bounds

[-5,5]D 10

f21 Rotated Hybrid Composition Function [-5,5]D 360

f22
Rotated Hybrid Composition Function with High Condition Number 
Matrix

[-5,5]D 360

f23 Non-Continuous Rotated Hybrid Composition Function [-5,5]D 360
f24 Rotated Hybrid Composition Function [-5,5]D 260
f25 Rotated Hybrid Composition Function without Bounds [2,5]D 260

(Table 2) The benchmark functions of CEC2005

The time complexity of the proposed HEDADE-SA 

algorithm is mainly concentrated in Step 5.1. The main 

function of Step 5.1 is to sort NP individuals in ascending, 

and its time complexity is O(NP×NP). Consequently, the time 

complexity of HEDADE-SA is O(NP×NP×MaxFEs).

4. Experiments and Analysis

4.1 Benchmark functions and experimental 

setting

The algorithm is conducted on a set of twenty-five 

benchmark functions of CEC2005 [22]. Table 2 depicts the 

function types, the function names, the initialization ranges, 

and the bias values of these functions.

For a fair comparison, the following parameters are the 

same as follows: problem dimension D is equal to 30; 

MaxFEs is set to 3×105; each is for 30 independent runs per 

function. The experiments were conducted on a pc of 64 bit 

Core i7-4770 3.40 GHz CPUs and 8 GB RAM. Moreover, all 

algorithms were implemented in Eclipse SDK 4.3.2 and 

executed in Ubuntu 16.04 (64bit).

4.2 Experimental study and discussion

4.2.1 Parameter study in F and CR

In HEDADE-SA, the choice of the scaling factor F and 

the crossover probability CR is quite sensitive. Therefore, in 

this section, we compared the proposed HEDADE-SA 

algorithm with different values of F and CR, namely 

HEDADE-SA with (F = 0.1, CR = 0.1), HEDADE-SA with 

(F = 0.1, CR = 0.9), HEDADE-SA with (F = 0.5, CR = 0.1), 
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Function F=0.1/CR=0.1 F=0.1/CR=0.9 F=0.5/CR=0.1 F=0.5/CR=0.9
f1 5.06E-09 8.91E-29 1.05E-05 2.11E-28
f2 4.37E+03 1.67E-06 8.93E+03 3.38E-01
f3 2.13E+07 1.11E+06 3.57E+07 1.09E+06
f4 9.59E+03 6.44E+02 1.41E+04 1.53E+01
f5 3.23E+03 3.70E+03 3.92E+03 1.98E+03
f6 8.34E+01 3.11E-01 5.86E+01 1.51E+01
f7 4.70E+03 4.70E+03 4.70E+03 4.70E+03
f8 2.09E+01 2.09E+01 2.10E+01 2.10E+01
f9 1.49E-01 1.28E+01 3.36E+01 1.33E+01
f10 1.41E+02 4.08E+01 1.76E+02 1.80E+02
f11 3.38E+01 1.42E+01 3.43E+01 3.86E+01
f12 2.57E+04 5.27E+03 1.05E+05 3.78E+03
f13 5.56E+00 2.35E+00 6.52E+00 1.28E+01
f14 1.32E+01 1.17E+01 1.32E+01 1.31E+01
f15 4.03E+02 3.08E+02 4.07E+02 3.17E+02
f16 1.64E+02 9.15E+01 2.07E+02 2.00E+02
f17 2.01E+02 8.26E+01 2.37E+02 2.21E+02
f18 8.71E+02 8.47E+02 9.08E+02 8.48E+02
f19 8.71E+02 8.61E+02 8.97E+02 8.63E+02
f20 8.91E+02 8.52E+02 9.00E+02 8.66E+02
f21 5.00E+02 5.00E+02 5.00E+02 5.00E+02
f22 9.60E+02 9.61E+02 9.79E+02 9.31E+02
f23 5.34E+02 5.34E+02 5.34E+02 5.34E+02
f24 2.00E+02 2.00E+02 2.00E+02 2.00E+02
f25 1.66E+03 1.65E+03 1.66E+03 1.65E+03

Ranking 2.58 1.62 3.54 2.26

(Table 3) Results of HEDADE-SA with different values of F and CR

and HEDADE-SA with (F = 0.5, CR = 0.9).  Other parameters 

of HEDADE-SA are same and shown as follows: NP = 1000, 

NS_U = 10%*NP and NS_L = 3, SP_L = 0.2 and SP_U = 

0.9, and L = 0.3. Table 3 shows the experiment results for 

Friedman’s test. The value of average rankings is smaller, the 

performance of the algorithm is better.  It can be seen that 

HEDADE-SA with (F = 0.1, CR = 0.9) performs the best 

performance according to Table 3. In the following experiments, 

HEDADE-SA adopts the above parameters. 

4.2.2 Comparison of HEDADE-SA and 

HEDADE-SA variants

To demonstrate the effectiveness of the self-adaptive 

strategy, HEDADE-SA is compared with four HEDADE-SA 

variants, namely HEDADE-SA with DE/rand/1, DE/rand/2, 

DE/best/1, and DE/best/2 mutation strategies, denoted by 

HEDADE-SA1, HEDADE-SA2, HEDADE-SA3, and HEDADE-SA4.

For HEDADE-SA1, HEDADE-SA2, HEDADE-SA3, and 

HEDADE-SA4, the parameter settings are the same as 

follows: NP is set to 1000, SPi(t) is set to 0.5, and NS is set 

to 10%*NP. In Table 4, Wilcoxon's rank sum test is 

implemented to compare HEDADE-SA with other algorithms. 

Moreover, "-", "+", and "≈" represents that the performance 

of HEDADE-SA is better than, worse than, and similar to 

that of others, respectively. From Table 4, the performance of 

HEDADE-SA is superior to that of HEDADE-SA1, 

HEDADE-SA2, HEDADE-SA3, and HEDADE-SA4 on 13, 

14, 12, and 11 problems, respectively, and that is similar to 

HEDADE-SA1, HEDADE-SA2, HEDADE-SA3, and 

HEDADE-SA4 on 9, 9, 10, and 11 problems, respectively. 

The results for Friedman’s test are shown in Table 5, which 

indicates that the self-adaptive strategy is effective.
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F HEDADE-SA1
mean±std

HEDADE-SA2
mean±std

HEDADE-SA3
mean±std

HEDADE-SA4
mean±std

HEDADE-SA
mean±std

f1 5.85E-15±1.76E-15 − 3.33E-14±1.02E-14 − 2.49E-26±4.11E-27 − 2.49E-26±4.15E-27 − 8.91E-29±1.01E-28
f2 2.03E+03±2.20E+02 − 2.00E+03±1.68E+02 − 6.46E-03±4.32E-03 − 1.44E-03±1.19E-03 − 1.67E-06±6.35E-06
f3 7.30E+06±9.62E+05 − 8.16E+06±9.55E+05 − 1.10E+06±3.39E+05 ≈ 1.05E+06±3.52E+05 ≈ 1.11E+06±2.83E+05
f4 4.18E+03±4.59E+02 − 4.23E+03±4.66E+02 − 4.20E+02±3.27E+02 + 4.72E+02±3.53E+02 + 6.44E+02±2.47E+02
f5 3.20E+03±1.49E+02 + 3.11E+03±1.08E+02 + 4.44E+03±7.51E+02 − 4.27E+03±6.90E+02 − 3.70E+03±3.30E+02
f6 8.22E+01±2.23E+01 − 6.70E+01±3.08E+01 − 5.05E+01±3.87E+01 − 3.41E+01±2.98E+01 − 3.11E-01±9.98E-01
f7 4.70E+03±0.00E+00 ≈ 4.70E+03±0.00E+00 ≈ 4.70E+03±0.00E+00 ≈ 4.70E+03±0.00E+00 ≈ 4.70E+03±0.00E+00
f8 2.09E+01±6.29E-02 ≈ 2.09E+01±6.05E-02 ≈ 2.09E+01±6.53E-02 ≈ 2.09E+01±4.99E-02 ≈ 2.09E+01±6.90E-02
f9 1.17E+02±7.43E+00 − 1.32E+02±7.44E+00 − 1.07E+01±2.34E+00 + 9.57E+00±3.49E+00 + 1.28E+01±3.41E+00
f10 1.71E+02±1.06E+01 − 1.74E+02±7.77E+00 − 6.36E+01±3.92E+01 − 7.16E+01±5.58E+01 − 4.08E+01±9.99E+00
f11 3.95E+01±9.30E-01 − 3.93E+01±9.33E-01 − 1.36E+01±2.23E+00 ≈ 1.29E+01±2.29E+00 + 1.42E+01±2.57E+00
f12 1.09E+04±5.44E+03 − 8.87E+03±2.06E+03 − 4.94E+03±4.40E+03 ≈ 5.36E+03±4.78E+03 ≈ 5.27E+03±3.01E+03
f13 1.33E+01±9.65E-01 − 1.41E+01±8.25E-01 − 1.87E+00±4.99E-01 + 4.64E+00±3.09E+00 − 2.35E+00±4.74E-01
f14 1.32E+01±1.27E-01 − 1.32E+01±1.88E-01 − 1.22E+01±4.43E-01 − 1.23E+01±4.58E-01 − 1.17E+01±7.04E-01
f15 3.00E+02±0.00E+00 ≈ 3.03E+02±1.80E+01 ≈ 3.94E+02±8.93E+01 − 3.05E+02±1.48E+02 ≈ 3.08E+02±6.43E+01
f16 1.91E+02±5.87E+00 − 1.87E+02±8.86E+00 − 1.97E+02±1.60E+02 − 1.35E+02±1.09E+02 − 9.15E+01±1.00E+02
f17 2.08E+02±1.20E+01 − 2.10E+02±1.15E+01 − 1.81E+02±1.45E+02 − 1.66E+02±1.44E+02 − 8.26E+01±6.31E+01
f18 8.43E+02±6.04E+01 ≈ 8.59E+02±6.32E+01 ≈ 8.85E+02±6.08E+01 − 8.79E+02±6.04E+01 ≈ 8.47E+02±6.13E+01
f19 8.71E+02±6.18E+01 ≈ 8.67E+02±6.25E+01 ≈ 8.96E+02±5.30E+01 ≈ 8.94E+02±5.21E+01 ≈ 8.61E+02±6.53E+01
f20 8.58E+02±6.23E+01 ≈ 8.79E+02±6.03E+01 ≈ 8.90E+02±5.92E+01 ≈ 8.79E+02±6.03E+01 ≈ 8.52E+02±6.38E+01
f21 5.00E+02±0.00E+00 ≈ 5.00E+02±0.00E+00 ≈ 5.87E+02±2.22E+02 − 5.54E+02±1.69E+02 ≈ 5.00E+02±0.00E+00
f22 9.52E+02±6.57E+00 + 9.50E+02±5.21E+00 + 9.76E+02±1.53E+01 − 9.78E+02±2.15E+01 − 9.61E+02±1.87E+01
f23 5.34E+02±0.00E+00 ≈ 5.34E+02±0.00E+00 ≈ 5.97E+02±1.90E+02 ≈ 5.98E+02±1.91E+02 − 5.34E+02±0.00E+00
f24 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00
f25 1.65E+03±1.80E+00 + 1.66E+03±0.00E+00 − 1.64E+03±8.00E+00 ≈ 1.65E+03±9.07E+00 ≈ 1.65E+03±6.63E+00

− 13 14 12 11

+ 3 2 3 3

≈ 9 9 10 11

(Table 4) Results of HEDADE-SA and HEDADE-SA variants

Algorithm HEDADE-SA1 HEDADE-SA2 HEDADE-SA3 HEDADE-SA4 HEDADE-SA

Ranking 3.30 3.48 3.12 2.90 2.20

(Table 5) The average rankings of HEDADE-SA with HEDADE-SA variants

4.2.3 Comparison of HEDADE-SA and other 

four algorithms

In this experiment, HEDADE-SA is compared with the 

other four algorithms, such as UMDAc [23], DE [11], 

DE/EDA [12] and JDE [24]. UMDAc is a classical algorithm 

of continuous EDA. DE is a representative algorithm of EA. 

DE/EDA is a combination algorithm of DE and EDA. JDE 

is a famous algorithm of DE. For UMDAc, NP is set to NP 

= 1000, and the Sampling Rate (SR) is set to SR = 30%. For 

DE, NP = 100, F is set to F = 0.5, CR is set to CR = 0.9 

and DE/rand/1 is selected. For DE/EDA, NP = 1000, F = 0.5, 

CR = 0.9, SR = 50%. For JDE, the settings of parameters 

follow its original literature. 

Experiment results are listed in Table 6. HEDADE-SA 

significantly outperforms UMDAc except for f8 because 

UMDAc converges slowly and the solutions are also inferior. 

In addition, compared with HEDADE-SA, DE is worse on 11 

test problems, JDE is worse on 13, and DE/EDA is worse on 

18 tests. Furthermore, Table 7 displays the results of the 

Friedman test, and a graphical representation of the Friedman 

test is shown in Figure 2. The superior performance of 

HEDADE-SA is evidently according to Table 7 and Figure 
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F UMDAc
mean±std

DE
mean±std

JDE
mean±std

DE/EDA
mean±std

HEDADE-SA 
mean±std

f1 1.99E+04±9.35E+02 − 1.52E-29±5.08E-29 + 0.00E+00±0.00E+00 + 9.69E-03±2.14E-03 − 8.91E-29±1.01E-28
f2 2.94E+04±8.54E+02 − 3.13E-05±2.53E-05 − 7.04E+02±2.39E+02 − 2.65E+03±4.21E+02 − 1.67E-06±6.35E-06
f3 2.93E+08±2.88E+07 − 3.96E+05±2.21E+05 + 9.43E+06±3.16E+06 − 2.14E+07±3.58E+06 − 1.11E+06±2.83E+05
f4 3.16E+04±9.90E+02 − 1.63E-02±1.75E-02 + 2.52E+03±8.49E+02 − 5.29E+03±9.03E+02 − 6.44E+02±2.47E+02
f5 2.49E+04±5.42E+02 − 4.61E+01±5.30E+01 + 1.84E+03±2.77E+02 + 3.79E+03±3.11E+02 ≈ 3.70E+03±3.30E+02
f6 3.65E+09±3.01E+08 − 6.33E-02±1.13E-01 + 1.65E+01±1.63E+01 − 5.36E+01±8.92E+00 − 3.11E-01±9.98E-01
f7 9.78E+03±9.31E+01 − 4.70E+03±0.00E+00 ≈ 4.70E+03±0.00E+00 ≈ 5.02E+03±2.04E+01 − 4.70E+03±0.00E+00
f8 2.10E+01±4.96E-02 ≈ 2.10E+01±5.62E-02 ≈ 2.09E+01±7.27E-02 ≈ 2.09E+01±5.59E-02 ≈ 2.09E+01±6.90E-02
f9 1.49E+02±1.08E+01 − 1.38E+02±2.65E+01 − 5.08E-01±1.55E+00 + 1.96E+02±7.12E+00 − 1.28E+01±3.41E+00
f10 2.61E+02±1.40E+01 − 1.80E+02±1.26E+01 − 1.71E+02±1.07E+01 − 2.00E+02±7.76E+00 − 4.08E+01±9.99E+00
f11 2.71E+01±1.76E+00 − 3.94E+01±1.04E+00 − 3.66E+01±1.34E+00 − 3.90E+01±1.39E+00 − 1.42E+01±2.57E+00
f12 5.63E+05±4.70E+04 − 1.50E+03±1.72E+03 + 7.79E+04±3.04E+04 − 2.65E+05±4.88E+04 − 5.27E+03±3.01E+03
f13 8.97E+00±1.27E+00 − 1.50E+01±1.00E+00 − 7.08E+00±5.63E-01 − 1.70E+01±8.37E-01 − 2.35E+00±4.74E-01
f14 1.24E+01±2.04E-01 − 1.33E+01±1.29E-01  − 1.33E+01±2.00E-01 − 1.33E+01±1.28E-01 − 1.17E+01±7.04E-01
f15 8.75E+02±1.84E+01 − 4.03E+02±1.80E+01 − 3.70E+02±4.58E+01 − 4.03E+02±1.80E+01 − 3.08E+02±6.43E+01
f16 8.34E+02±4.91E+01 − 2.05E+02±7.89E+00 − 1.91E+02±9.34E+00 − 2.24E+02±5.89E+00 − 9.15E+01±1.00E+02
f17 9.08E+02±6.08E+01 − 2.28E+02±9.22E+00 − 2.17E+02±1.27E+01 − 2.51E+02±1.15E+01 − 8.26E+01±6.31E+01
f18 1.20E+03±6.37E+00 − 9.05E+02±1.14E+00 ≈ 9.07E+02±1.41E+00 ≈ 9.18E+02±1.05E+00 − 8.47E+02±6.13E+01
f19 1.20E+03±7.52E+00 − 9.01E+02±1.88E+01 ≈ 9.07E+02±1.48E+00 ≈ 9.19E+02±9.12E-01 ≈ 8.61E+02±6.53E+01

f20 1.20E+03±9.55E+00 − 9.01E+02±1.88E+01 ≈ 9.07E+02±1.22E+00 ≈ 9.18E+02±1.09E+00 ≈ 8.52E+02±6.38E+01

f21 1.26E+03±4.42E+00 − 5.10E+02±5.39E+01 ≈ 5.00E+02±0.00E+00 ≈ 5.00E+02±0.00E+00 ≈ 5.00E+02±0.00E+00
f22 1.24E+03±3.25E+01 − 9.09E+02±9.38E+00 + 9.27E+02±4.97E+00 + 9.58E+02±6.40E+00 ≈ 9.61E+02±1.87E+01
f23 1.26E+03±6.51E+00 − 5.70E+02±1.64E+01 − 5.34E+02±0.00E+00 ≈ 5.83E+02±1.19E+01 − 5.34E+02±0.00E+00
f24 1.30E+03±5.73E+00 − 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00 ≈ 2.00E+02±0.00E+00
f25 1.86E+03±5.82E+00 − 1.66E+03±4.82E+00 − 1.66E+03±4.23E+00 − 1.68E+03±4.82E+00 − 1.65E+03±6.63E+00
− 24 11 13 18

+ 0 7 4 0

≈ 1 7 8 7

(Table 6) Experimental results of HEDADE-SA and others for benchmark functions of CEC2005

2. Figure 3 indicates the convergence process of these 

algorithms on representative test functions.

Algorithm UMDAc DE JDE DE/EDA HEDADE-SA

Ranking 4.62 2.52 2.42 3.8 1.64

(Table 7) The average rankings of HEDADE-SA 

and other four algorithms

DE DE/EDA HEDADE-SA JDE UMDAc
Algorithms
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(Figure 2) The graphical representation of the 

Friedman test of the algorithms

5. Conclusion

  In this research, a hybrid estimation of distribution 

algorithm with differential evolution based on self-adaptive 

strategy (namely HEDADE-SA) is proposed. An alternative 

probability model for sampling is utilized for the proposed 

algorithm. Moreover, a self-adaptive strategy is adopted to 

make full use of EDA and DE operators. Through these 

methods, the population diversity and the convergence speed 

of the algorithm are improved. Experiment results show that 

HEDADE-SA exhibits superior performance than the other 

comparison algorithms. In the future, the proposed 

HEDADE-SA algorithm can be used to deal with large-scale 

global problems.
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(Figure 3) Convergence curve of the algorithms on representative test functions
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