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ABSTRACT

Deep neural networks(DNN), which are used as approximation functions in reinforcement leaming (RN), theorefically can be
affributed fo redlistic results. In empirical benchmark works, time difference learning (TD) shows better results than Monte-Carlo leaming
(MC). However, among some previous works show that MC is better than TD when the reward is very rare or delayed. Also, another
recent research shows when the information observed by the agent from the environment is parfial on complex control works, it
indicates that the MC prediction is superior to the TD-based methods. Most of these environments can be regarded as 5-step
Q-learning or 20-step Q-learning, where the experiment continues without long roll-outs for dlleviating reduce performance degradation.
In other words, for networks with a noise, a representative network that is regardless of the controlled roll-outs, it is better to learn MC,
which is robust to noisy rewards than TD, or almost identical to MC. These studies provide a break with that TD is better than MC.
These recent research results show that the way combining MC and TD is better than the theoretical one. Therefore, in this study, based
on the results shown in previous studies, we atfempt to exploit a random balance with a mixture of TD and MC in RL without any
complicated formulas by rewards used in those studies do. Compared to the DQN using the MC and TD random mixfure and the
well-known DQN using only the TD-based leamning, we demonstrate that a well-performed TD leamning are also granted special favor
of the mixture of TD and MC through an experiments in OpenAl Gym.
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1. Introduction

Deep neural networks (DNN) as function approximators
in reinforcement learning (RL) [1, 2] has significantly
enlarged dealing with real environment. Theoretical results
could be helped mainly on linear function approximators
within a set of narrow environment. However, their
theoretical assumptions do not consider the genuine
real-world application domains of deep RL, such as high
input dimensionality of feature patterns or non-linear function
approximators. Such expressive parameterization in the DNN
also brings up thousands of practical issues. It tends to be
sensitive to hyper-parameter. Moreover, poor hyper-parameter
settings lead to unstable or non-convergent training or
diverge to infinity. Also, Deep RL [3] is more likely to
exhibit high sample complexity, which is impractical to the
real-world problems like DNN. It is regarded that batch
policy gradient RL offers stability of learning than Deep RL.
However, it leads to the high-variance requiring large batches
because their estimations are continually growing. So,
TD-style [4] techniques, for example Q-learning or
actor-critic, are regarded helpful for sample-efficient but still
biased, and require expensive hyper-parameters setting for
better stabilization. Also, MC of RL [, 2] is regarded as that
it can offer nearly unbiased because MC policy gradient is
common for on-policy techniques. However, MC might be
occasionally suffering from high variance. Therefore, to deal
with high variance gradient and such a difficult optimal
parameterization, there are some previous valuable research
works, such as mixing value-based back-ups in MC [4].
However, most those works require huge amount of samples
and some complicated formular of rewards for dealing with
these real-world problems, which is very intensive in terms
of Big-Data. Off-policy Q-learning [3, 5] and off-policy
actor-critic [4] can use all samples by TD-learning combined
with experience replay in deep neural network for
sample-efficient. Such architectures are significantly useful
in terms of Big-Data samples. Still, there are some issues on
a convergence of TD-learning, which is not guaranteed with
non-linear function approximators. Non-convergence and
instability issues still require extensive hyper-parameter
tuning and human-interactions[6].

In some benchmark works, TD based on a combination of
MC theory and dynamic programming (DP) [2, 4] theory has
been used for better empirical results rather than theoretical
results. Moreover, some recent works show that
finite-horizon MC is a little superior than TD, when it comes
to sparse or delayed rewards. Moreover, recent researches
show that a technique based on MC prediction might
outperform TD-based methods on complex control works in
partially observables. Most of these environments can be
regarded as S-step Q-learning or 20-step Q-learning, where
the experiment continues without long roll-outs for
alleviating deterioration of performance results. In other
words, for networks with a noise, a representative network
that is regardless of the controlled roll-outs, it is better to
learn MC, which is robust to noisy rewards than TD, or
almost identical to MC. These studies provide a break with
that TD is better than MC. The key point of recent research
results is to suggest the ways combining MC and TD [4]. In
value-based deep RL architectures with bootstrapping
samples of Big-Data such as DQN [3], TD have been
regarded as superior than MC. However, recent empirical
researches have shown that MC is more stable to noisy and
sparse rewards or a balance of TD and MC [4] are more
practical for training an Al agent. Our study focus on
discrete action sets and algorithms involving a prediction of
value function, which can be learned via a combination of
TD and MC to make value-based methods perform better.

Therefore, in this study, based on the results shown in
previous researches, we attempt to exploit a random balance
with a mixture of TD and MC in RL without any
complicated formulas by rewards used in those researches do.
We also demonstrate that DQN with a well-performed TD
leaning are also granted special favor of the mixture of TD
and MC at random. Moreover, our proposed algorithm goes
through experimental comparison with the well-known DQN
using only the TD-based learning. The result shows that our
proposed algorithm has shorter training time than the
well-known DQN.

2. BackGrounds

Reinforcement learning (RL) consists of an artificial
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intelligence (AI) agent acting in an environment over discrete
time-steps. An environment is defined by states s, actions a,
a reward function r :
p(swilsia) and a discount factor y <& [0,1]. Let Tk denote an
optimal policy such as Qn*(s,a) > Q'(s,a) for every s € S,
a € A and any policy Tt In terms of Q-learning, the policy

sXa—r, a transition probability

Tl is a maximum in every update of Big-Data. The objective
of the equation is to find a policy Tt (a]s) to maximize the
expected sum of all future rewards through the episode such
as R = 2 T 1i. (1). To avoid divergence for long episodes,
long-distant rewards can be decayed by a discount factor y
or truncated until the explicit steps T (horizon) such as Ry’
=2 T V' = 1+ Yot Vet . RG= 2% Q).
For a given policy Tt the value function and the action-value
function are defied as expected returns that are conditioned
on observation or the observation-action pair respectively
such as V'(s) = EfRist], Q(s,a)=ErRys,a]. (3). Optimal
value and action-value functions are defined such as V*(s() =
maxeV(s), Q (5620 = maxrQs,a). (4). In value-based RL
such as Q-learning, the value or action-value are estimated
by a function approximator V with parameters 8. The
function approximation is trained by minimizing a loss
between the current estimate and a target value such as L(0)
= (V(sz0) — Vmget)z.(S). Updates on the target each step
makes the value or action-value stable.

Monte Carlo (MC) trains the Al agent with the formular,
Virget = R% 0of Vi = R [0,1] This target requires
propagation of the forward before a training step can take
place, for example by the step T for finite-horizon return R,
or the end of the episode for the discounted return RY,. It
might increase the variance of the target value. However, it
cannot be biased because it is not approximated. An
alternative to MC training is temporal difference (TD), which
estimates the return by bootstrapping samples of Big-Data
from the function approximators, after acting for a fixed
number of steps n such as Vige = 20" iy’ 1ty "V(setn;
0). (6). TD learning is used within finite-horizon returns. TD
applied to the action-value function is the well-known
Q-learning.

Usually, the classic Q-learning algorithms are used in
synergy with deep neural networks, which can oscillate or
diverge because the Q-value estimated by Q-learning
algorithm are approximated. This limitation is caused by

correlated Big-Data or continuously repeated updates.
Therefore, some benchmark works [1, 2, 3] use an
experience replay memories which samples at random from
the mini-batch (s, a;, 1, Si+1) from the memory buffers, D. So,
the training are smoothly over many experience Big-Data. It
is explicit to take advantage of the deep neural network
(DNN) in RL because the all experiences of the trajectories,
is buffered in D for Q(sw1, aw+1,0) at random and also reused
by MC training. Figure 1 shows that Q-learning goes into
DNN. So, it is called DQN, which can take advantage of the

experience replay memories.

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {21} and preprocessed sequenced ¢1 = ¢(s1)
fort=1,7do
With probability € select a random action a;
otherwise select a; = max, Q*(4(s¢), a; 0)
Execute action a, in emulator and observe reward 7, and image x4
Set $¢+1 = 8¢, at, T41 and preprocess ¢r+1 = ¢(S¢+1)
Store transition (¢, ay, 4, ¢y+1) in D
Sample random minibatch of transitions (¢;, a;, 7, ¢;41) from D
Sety; = { T for terminal ¢,
i rj +ymaxy Q(dj41,a';0)  for non-terminal ¢
Perform a gradient descent step on (y; — Q(¢;, a;; 9))“) according to equation 3
end for
end for

(2l 1) DQN &12|E (3)
(Figure 1) The DQN algorithm (3]

The Deep Neural Network (DNN) architecture is based on
multiple stacked layers of neurons. A neuron is a non-linear
transformation architecture of the linear sum of Big-Data
sample inputs. Normally, the first layer models the data
itself. Stacked hidden layers in the Neural Network(NN) is
constructed as arrays of neurons receiving the inputs from
the previous layer. The a neuron activator as a function on
the top of the stacked layers in the NN is using composite
functions, which show that supervised training of a DNN
with non-linearities architecture is faster. So, most stacked
hidden layers are composed of the activators such as Rectifi
ed Linear Units (ReLU) [7].

3. THE PROPOSED ALGORITHM

For better exploration and bias-variance balance, some
researchers suggests a mixture of TD and MC [4], which is
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applicable to high-dimensional discrete environments,
partially observable or sparse by using DQN with replay
memories. TD-based Al training has been used for more
frequently and efficiently because of empirical reasons since
the breaking results ATARI-BREAKOUT [3]. Based on the
research [4], we propose the technique to exploit a random
balance with a mixture of TD and MC in RL training,
specifically DQN. Figure 2 shows our proposed algorithm of
off-policy RL, DQN with Monte Carlo and Temporal
Difference Balance at random. Mixture of MC and TD is
accomplished using (3, and (3, random probabilities in [0, 1]
for TD and MD, respectively.

Algorithm DQN with Monte Carlo and Temporal Difference Balance
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode =1, M do
Initialize sequence s, = {x;} and preprocessed sequenced @;= ¢(s;)
for time=1, T do
With probability ¢ select a random action a,
Otherwise select a; = max,Q*( (s, a; 6)
Execute action a, in emulator and observe reward r, and image xi.,
Set St,1=Sy, @, X1 and pPreprocess ¢y =¢(S.1)
Store transition (¢, a, ry, 9s1) IN D
Sample random minibatch of transitions (¢, a, 1, ®;.1) from D
Set y;= r; for terminal ¢;_
Otherwise set y;= r; + ymax,;Q(gj.4, @; D) for non-terminal ¢,
With a random probability 8; perform a gradient descent step
on (y- Qg a; 6)?
end for
With a random probability 8, perform a gradient descent step
on (y- Qg a; 6)?
end for

(O3 2) 2 =2dlM Helksle E112l&
(Figure 2) The proposed algorithm

We attempt to combine Monte Carlo and Temporal
Difference with the truncated-steps (horizon) through the
whole roll-out. Our proposed algorithm is different from the
results of the previous research [4]. It is simpler and random
because we are targeting the goal without any complicated
formula for the reward of the truncated-steps of exploration.
We follow a random probability (3 for performing a gradient
descent of TD and (3, for performing a gradient descent of
MC. B2 is (1 - B1). So, the expression is y; = 51* y_TD
+ (2 * y_MC. 1t is fundamentally based on a random policy
with (3, and [, respectively, for TD and MC. We
demonstrate that both TD and MC methods benefit from our
method through experimental comparison of the classic DQN

using only TD on high-dimensional discrete action
environments, such as the well-known environment OpenAl
Gym [8].

3.1 Algorithm Description

<off-policy RL, DQN with Monte Carlo and Temporal
Difference Balance>

1. Initialize replay memory D and action-value function Q
with random weights

2. Initialize the sequence with the start state, s.

3. The agent learns the policy maxQ*(Q(s),a);0) or
follows another policy with probability €.

4. For better exploration, an experience composed of a
tuple, such as (state @(s), action a, reward r, new state
@(s)) is in D selected randomly at every training step.

5. Sample a random mini-batch of transitions from D,
such as (state @(s), action a, reward r, new state @(s’))

6. For non-terminal state, reward based on maxeQ*((Q
(8),2°);0) is decayed by y or for terminal state, reward
is the current reward, r.

7. The weights for performing the gradient descent (rj+y
maxe Q¥(((5501),038) —Q(0(5),058) for a target DQN
with replay memories with probability random /.

8. Steps 3 -7 are repeated for training.

9. Before the next episode, the weights for performing the
gradient descent (1j+ymaxqQ*(0(sj+1),07;0) —Q(0(S),;
0)) for a target DQN with the whole memories in
every step with probability random (3,

10. Steps 2 -9 are repeated for training.

beta_1 = random() # random function
beta_2 =1 - beta_1 # beta_1 and beta_2
0_target = reward + GAMMA * argmax(values) # for TD-learning
# reward from the environment
# GAMMA is the discount_factor
i Q_target is TD-learning
# values are the estimated Q-values in every state
For every episode: # for NC-learning
G_target = GAMMA = (reward * G_target)
value = (value + ALPHA = (G_target - value) )
# G_target is HC-learning
# ALPHA is the learning rate
# value is the estimated Q-value in a state
Y_target = beta_1 + Q_target + beta_2 * G_target
# Y_target is a mixture of TD and MC

(a3l 3) 8 =20 Fekste ¢uz|&e| eimZ=
(Figure 3) The pseudo code of the proposed
algorithm
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4. Performance Evaluation

We exploit OpenAl Gym [8] for our proposed algorithms,
DQN with TD and MC balance at random. We consider
classic control environments in OpenAl Gym, such as
CartPole-VO [9]. With benchmark approaches [1, 3], we
exploit an experience replay for better exploration. Moreover,
in our proposed method, Q-learning stores past expetiences
at each time step in a buffer D, which is known as a replay
memory. Our emulators from OpenAl Gym [8] can apply
mini-batch updates in D. After the experience replay memory
D, the agent’s actions of the emulator follow &-greedy policy.
In terms of DQN with the replay memory D for better
exploration, we also follow the theory of the target
Q-network of the breakthrough researches in [1, 3]. The
Q-learmning agent calculates the TD-error with the current
estimated Q-value[2]. Updates based on the target network is
slower than those on the current network.

In CartPole-VO [9], a pole is attached with an unactuated
joint to a cart moving along a frictionless track. It is
controlled by forcing +1 or —1 to the cart. The pole starts
upright, and the goal is to prevent it from falling over [9].
A +1 reward is given to every time step in which the pole
remains upright [9]. The episode stops when the pole is more
than 15° from the vertical direction or the cart moves more
than 2.4 units from the center [9]. In our simulation,
CartPole-VO defines “solving” as if the average reward is
more than 490 or equal to 500 over 10 consecutive runs [10].
The agent of CartPole-VO receives —100 reward if it falls
over prior to the max-length of the episode [10]. Our
proposed algorithm with MC and TD balance at random is
implemented using TensorFlow [11] and Keras [12]. For the
proposed algorithm, we follow similar previous studies [10].
Figure 3 shows the pseudo code of the proposed algorithm.
For CartPole-VO [9] by OpenAl Gym [8], the
discount-factor, GAMMA = 0.95, the learning rate, ALPHA
= 0.001, the size of replay buffer, D = 10,000, the size of
mini-bach = 64, the maximum of exploration = 1.0, the
minimum of exploration = 0.01, and the random epsilon
decay = 0.995 are the same as with the previous DQN
studies [10].

In Figure 3, we consider that Q_target for TD-learning is

trained every episode, but G_target for MC-learning is
trained in the end of whole episodes. The mixture update are
accomplished based on the probabilities 3; and 3. Followed
by the observables of the environment, 3, and 3, are able
to be marginally interacted by system designers. For
G_target, we should check the length of the whole episodes.
Moreover, we suggest that when the roll-out is toward to the
maximum length, training of the AI agent with MC-based
will be finished earlier than the maximum length because the
value function can be approximately close to the best
prediction. Therefore, we do not need the whole episodes any

more.

Cart-Pole V.1 by DQN with replay memory

oo M@ w0 o o Moo = owmom oo n Mmoo
SRS RCBREESA IR ERGEEEEAR

QN

o 177

—+—TD-based classic DON —+—TD+MC-based proposed

(Td 4) 2o 3 71 Fnol F9

(Figure 4) The best case

Cart-Pole V.1 by DQN with replay memory

—e—TD-based classic DON =—e—TD+MC-based proposed DON

(32 b) 2t T 7K 4| F2

(Figure 5) The worst case

Figure 4 and Figure 5 display most of the results for best
and worst cases, respectively. The proposed algorithm,
off-policy RL, DQN with MD and TD balance at random
can yield better results than the class DQN using only
TD-learning in most cases. In the best case, our proposed
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algorithm reaches the maximum reward earlier than the
classic DQN. However, in the worst case, our proposed
algorithm is almost same with the class DQN. Therefore, we
can attempt a different type of deep neural network (DNN)
or hyper-parameter settings to demonstrate that our proposed
model can enhance the exploration with only MC and TD
balance at random. We are convinced that we can enhance
the behavior policy. For the purpose, we have more runs.
Table 1 shows that the quantitative comparison between our
proposed algorithm and the class DQN using only
TD-learning. Actually, most cases are similar. However, in
therms of “in score 150”, our proposed algorithm is better
than the classic DQN using only TD-learning. After this we
consider that the sample-efficient policy gradient such as
DDPG would be possible to have better results. Our next
step is about to combine MC and TD not only off-policy RL,
DQN but also policy gradient methods, such as DDPG [6,
13, 14]. Moreover, we will attempt to exploit the different
type of deep neural networks such as CNN. [14]

(£ 1) &2 vlju 21

(Table 1) Quantitative Comparison

The Best Cases The Average Cases The worst Cases
(in between 1008:200) | (in between 300&500) | (Never Ending until MAX Score 500)

(a)20%, (b)20(%) (a)79%, (b)79(%) (a)1%, (b)1(%)

In 150 (a)60%, (b}40%

(a) The proposed TD+MC based algorithm (b) The class DQN using only TD-learning

5. Conclusion

In this paper, we have suggested the technique to exploit
a random balance with a mixture of TD and MC in
off-policy RL, representative DQN. We demonstrate DQN
with TD and MC balance at random, which is trained with
a random probability /3 for performing a gradient descent of
TD and (3, for performing a gradient descent of MC. We
attempt to exploit a random balance with a mixture of TD
and MC in RL without any complicated formulas for better
exploration and easier deployment. We also demonstrate that
a well-performed TD learning are also granted special favor
of the mixture of TD and MC through an experiments in
OpenAl Gym. Our proposed method goes through
experimental comparison with the classic DQN using only

TD-learning. The result shows that our proposed algorithm
has shorter training time than the classic DQN using only
TD-learning. We will attempt to exploit a random balance
with a mixture of TD and MC in policy gradient of RL and
the different type of deep neural network.
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