
Journal of Internet Computing and Services(JICS) 2020. Oct.: 21(5): 1-7 1

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을
사용한 적은 샘플 복잡도

☆

 Random Balance between Monte Carlo and Temporal Difference in
off-policy Reinforcement Learning for Less Sample-Complexity

김 차 영1 박 서 희2 이 우 식3*

Chayoung Kim Seohee Park Woosik Lee

요 약

강화학습에서 근사함수로써 사용되는 딥 인공 신경망은 이론적으로도 실제와 같은 근접한 결과를 나타낸다. 다양한 실질적인 성

공 사례에서 시간차 학습(TD) 은 몬테-칼로 학습(MC) 보다 더 나은 결과를 보여주고 있다. 하지만, 일부 선행 연구 중에서 리워드가
매우 드문드문 발생하는 환경이거나, 딜레이가 생기는 경우, MC 가 TD 보다 더 나음을 보여주고 있다. 또한, 에이전트가 환경으로부

터 받는 정보가 부분적일 때에, MC가 TD보다 우수함을 나타낸다. 이러한 환경들은 대부분 5-스텝 큐-러닝이나 20-스텝 큐-러닝으로

볼 수 있는데, 이러한 환경들은 성능-퇴보를 낮추는데 도움 되는 긴 롤-아웃 없이도 실험이 계속 진행될 수 있는 환경들이다. 즉, 긴
롤-아웃에 상관없는 노이지가 있는 네트웍이 대표적인데, 이때에는 TD 보다는 시간적 에러에 견고한 MC 이거나 MC와 거의 동일한

학습이 더 나은 결과를 보여주고 있다. 이러한 해당 선행 연구들은 TD가 MC보다 낫다고 하는 기존의 통념에 위배되는 것이다. 다시

말하면, 해당 연구들은 TD만의 사용이 아니라, MC와 TD의 병합된 사용이 더 나음을 이론적이기 보다 경험적 예시로써 보여주고 있
다. 따라서, 본 연구에서는 선행 연구들에서 보여준 결과를 바탕으로 하고, 해당 연구들에서 사용했던 특별한 리워드에 의한 복잡한

함수 없이, MC와 TD의 밸런스를 랜덤하게 맞추는 좀 더 간단한 방법으로 MC와 TD를 병합하고자 한다. 본 연구의 MC와 TD의 랜덤

병합에 의한 DQN과 TD-학습만을 사용한 이미 잘 알려진 DQN과 비교하여, 본 연구에서 제안한 MC와 TD의 랜덤 병합이 우수한 학습
방법임을 OpenAI Gym의 시뮬레이션을 통하여 증명하였다.

☞ 주제어 : 온- 앤 오프-폴리시, 시간차 학습, 몬테 칼로 학습, 강화학습, 분산과 편차의 균형

ABSTRACT

Deep neural networks(DNN), which are used as approximation functions in reinforcement learning (RN), theoretically can be

attributed to realistic results. In empirical benchmark works, time difference learning (TD) shows better results than Monte-Carlo learning

(MC). However, among some previous works show that MC is better than TD when the reward is very rare or delayed. Also, another

recent research shows when the information observed by the agent from the environment is partial on complex control works, it

indicates that the MC prediction is superior to the TD-based methods. Most of these environments can be regarded as 5-step

Q-learning or 20-step Q-learning, where the experiment continues without long roll-outs for alleviating reduce performance degradation.

In other words, for networks with a noise, a representative network that is regardless of the controlled roll-outs, it is better to learn MC,

which is robust to noisy rewards than TD, or almost identical to MC. These studies provide a break with that TD is better than MC.

These recent research results show that the way combining MC and TD is better than the theoretical one. Therefore, in this study, based

on the results shown in previous studies, we attempt to exploit a random balance with a mixture of TD and MC in RL without any

complicated formulas by rewards used in those studies do. Compared to the DQN using the MC and TD random mixture and the

well-known DQN using only the TD-based learning, we demonstrate that a well-performed TD learning are also granted special favor

of the mixture of TD and MC through an experiments in OpenAI Gym.

☞ keyword : Deep Q-Network, Temporal Difference, Monte Carlo, Reinforcement Learning, Variation and Bias Balance

1 Division of General Studies, Kyonggi University, 154-42,
Gwanggyosan-ro, Yeongton-gu, Suwon, Korea.

2 KT, 151, Taebong-ro, Seocho-gu, Seoul, Korea.
3 SSiS, 173, Toegye-ro, Jung-gu, Seoul, Korea.
* Corresponding author (wslee@ssis.or.kr)

[Received 25 May 2020, Reviewed 15 June 2020(R2 24 July
2020), Accepted 9 August 2020]
☆ A preliminary version of this paper was presented at ICONI

2019 and was selected as an outstanding paper.

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2020 KSII

http://dx.doi.org/10.7472/jksii.2020.21.5.1

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도

2 2020. 10

1. Introduction

Deep neural networks (DNN) as function approximators

in reinforcement learning (RL) [1, 2] has significantly

enlarged dealing with real environment. Theoretical results

could be helped mainly on linear function approximators

within a set of narrow environment. However, their

theoretical assumptions do not consider the genuine

real-world application domains of deep RL, such as high

input dimensionality of feature patterns or non-linear function

approximators. Such expressive parameterization in the DNN

also brings up thousands of practical issues. It tends to be

sensitive to hyper-parameter. Moreover, poor hyper-parameter

settings lead to unstable or non-convergent training or

diverge to infinity. Also, Deep RL [3] is more likely to

exhibit high sample complexity, which is impractical to the

real-world problems like DNN. It is regarded that batch

policy gradient RL offers stability of learning than Deep RL.

However, it leads to the high-variance requiring large batches

because their estimations are continually growing. So,

TD-style [4] techniques, for example Q-learning or

actor-critic, are regarded helpful for sample-efficient but still

biased, and require expensive hyper-parameters setting for

better stabilization. Also, MC of RL [1, 2] is regarded as that

it can offer nearly unbiased because MC policy gradient is

common for on-policy techniques. However, MC might be

occasionally suffering from high variance. Therefore, to deal

with high variance gradient and such a difficult optimal

parameterization, there are some previous valuable research

works, such as mixing value-based back-ups in MC [4].

However, most those works require huge amount of samples

and some complicated formular of rewards for dealing with

these real-world problems, which is very intensive in terms

of Big-Data. Off-policy Q-learning [3, 5] and off-policy

actor-critic [4] can use all samples by TD-learning combined

with experience replay in deep neural network for

sample-efficient. Such architectures are significantly useful

in terms of Big-Data samples. Still, there are some issues on

a convergence of TD-learning, which is not guaranteed with

non-linear function approximators. Non-convergence and

instability issues still require extensive hyper-parameter

tuning and human-interactions[6].

In some benchmark works, TD based on a combination of

MC theory and dynamic programming (DP) [2, 4] theory has

been used for better empirical results rather than theoretical

results. Moreover, some recent works show that

finite-horizon MC is a little superior than TD, when it comes

to sparse or delayed rewards. Moreover, recent researches

show that a technique based on MC prediction might

outperform TD-based methods on complex control works in

partially observables. Most of these environments can be

regarded as 5-step Q-learning or 20-step Q-learning, where

the experiment continues without long roll-outs for

alleviating deterioration of performance results. In other

words, for networks with a noise, a representative network

that is regardless of the controlled roll-outs, it is better to

learn MC, which is robust to noisy rewards than TD, or

almost identical to MC. These studies provide a break with

that TD is better than MC. The key point of recent research

results is to suggest the ways combining MC and TD [4]. In

value-based deep RL architectures with bootstrapping

samples of Big-Data such as DQN [3], TD have been

regarded as superior than MC. However, recent empirical

researches have shown that MC is more stable to noisy and

sparse rewards or a balance of TD and MC [4] are more

practical for training an AI agent. Our study focus on

discrete action sets and algorithms involving a prediction of

value function, which can be learned via a combination of

TD and MC to make value-based methods perform better.

Therefore, in this study, based on the results shown in

previous researches, we attempt to exploit a random balance

with a mixture of TD and MC in RL without any

complicated formulas by rewards used in those researches do.

We also demonstrate that DQN with a well-performed TD

leaning are also granted special favor of the mixture of TD

and MC at random. Moreover, our proposed algorithm goes

through experimental comparison with the well-known DQN

using only the TD-based learning. The result shows that our

proposed algorithm has shorter training time than the

well-known DQN.

2. BackGrounds

Reinforcement learning (RL) consists of an artificial

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도

한국 인터넷 정보학회 (21권5호) 3

intelligence (AI) agent acting in an environment over discrete

time-steps. An environment is defined by states s, actions a,

a reward function r : s×a→r, a transition probability

p(st+1|st,at) and a discount factor γ∈ [0,1]. Let π∗ denote an

optimal policy such as Qπ∗(s,a) ≥ Qπ(s,a) for every s ∈ S,

a ∈ A and any policy π. In terms of Q-learning, the policy

π is a maximum in every update of Big-Data. The objective

of the equation is to find a policy π (at|st) to maximize the

expected sum of all future rewards through the episode such

as Rt = ∑ Ti=t ri. (1). To avoid divergence for long episodes,

long-distant rewards can be decayed by a discount factor γ

or truncated until the explicit steps τ (horizon) such as Rγ
t

= ∑ Ti=t γ
i−tri = rt + γrt+1+ γ2rt+2+ ... ; Rτt = ∑t+τ

i=tri. (2).

For a given policy π, the value function and the action-value

function are defined as expected returns that are conditioned

on observation or the observation-action pair respectively

such as V
π(st) = Eπ[Rt|st], Qπ(st,at)=EπRt|st,at]. (3). Optimal

value and action-value functions are defined such as V*(st) =

maxπV
π(st), Q*(st,at) = maxπQ

π(st,at). (4). In value-based RL

such as Q-learning, the value or action-value are estimated

by a function approximator V with parameters θ. The

function approximation is trained by minimizing a loss

between the current estimate and a target value such as L(θ)

= (V(st;θ) − Vtarget)
2.(5). Updates on the target each step

makes the value or action-value stable.

Monte Carlo (MC) trains the AI agent with the formular,

Vtarget = Rγt or Vtarget = Rτt. [0,1] This target requires

propagation of the forward before a training step can take

place, for example by the step τ for finite-horizon return Rτt

or the end of the episode for the discounted return Rγt. It

might increase the variance of the target value. However, it

cannot be biased because it is not approximated. An

alternative to MC training is temporal difference (TD), which

estimates the return by bootstrapping samples of Big-Data

from the function approximators, after acting for a fixed

number of steps n such as Vtarget = ∑t+n−1
i=tγ

i−tri+γ
nV(st+n;

θ). (6). TD learning is used within finite-horizon returns. TD

applied to the action-value function is the well-known

Q-learning.

Usually, the classic Q-learning algorithms are used in

synergy with deep neural networks, which can oscillate or

diverge because the Q-value estimated by Q-learning

algorithm are approximated. This limitation is caused by

correlated Big-Data or continuously repeated updates.

Therefore, some benchmark works [1, 2, 3] use an

experience replay memories which samples at random from

the mini-batch (st, at, rt, st+1) from the memory buffers, D. So,

the training are smoothly over many experience Big-Data. It

is explicit to take advantage of the deep neural network

(DNN) in RL because the all experiences of the trajectories,

is buffered in D for Q(st+1, at+1,θ) at random and also reused

by MC training. Figure 1 shows that Q-learning goes into

DNN. So, it is called DQN, which can take advantage of the

experience replay memories.

(그림 1) DQN 알고리즘 [3]

(Figure 1) The DQN algorithm [3]

The Deep Neural Network (DNN) architecture is based on

multiple stacked layers of neurons. A neuron is a non-linear

transformation architecture of the linear sum of Big-Data

sample inputs. Normally, the first layer models the data

itself. Stacked hidden layers in the Neural Network(NN) is

constructed as arrays of neurons receiving the inputs from

the previous layer. The a neuron activator as a function on

the top of the stacked layers in the NN is using composite

functions, which show that supervised training of a DNN

with non-linearities architecture is faster. So, most stacked

hidden layers are composed of the activators such as Rectifi

ed Linear Units (ReLU) [7].

3. THE PROPOSED ALGORITHM

For better exploration and bias-variance balance, some

researchers suggests a mixture of TD and MC [4], which is

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도

4 2020. 10

applicable to high-dimensional discrete environments,

partially observable or sparse by using DQN with replay

memories. TD-based AI training has been used for more

frequently and efficiently because of empirical reasons since

the breaking results ATARI-BREAKOUT [3]. Based on the

research [4], we propose the technique to exploit a random

balance with a mixture of TD and MC in RL training,

specifically DQN. Figure 2 shows our proposed algorithm of

off-policy RL, DQN with Monte Carlo and Temporal

Difference Balance at random. Mixture of MC and TD is

accomplished using 1 and 2 random probabilities in [0, 1]

for TD and MD, respectively.

(그림 2) 본 논문에서 제안하는 알고리즘

(Figure 2) The proposed algorithm

We attempt to combine Monte Carlo and Temporal

Difference with the truncated-steps (horizon) through the

whole roll-out. Our proposed algorithm is different from the

results of the previous research [4]. It is simpler and random

because we are targeting the goal without any complicated

formula for the reward of the truncated-steps of exploration.

We follow a random probability 1 for performing a gradient

descent of TD and 2 for performing a gradient descent of

MC. 2 is (1 - 1). So, the expression is yj = 1* y_TD

+ 2 * y_MC. It is fundamentally based on a random policy

with 1 and 2, respectively, for TD and MC. We

demonstrate that both TD and MC methods benefit from our

method through experimental comparison of the classic DQN

using only TD on high-dimensional discrete action

environments, such as the well-known environment OpenAI

Gym [8].

3.1 Algorithm Description

<off-policy RL, DQN with Monte Carlo and Temporal

Difference Balance>

1. Initialize replay memory D and action-value function Q

with random weights

2. Initialize the sequence with the start state, s.

3. The agent learns the policy maxαQ*(φ(st),a);θ) or

follows another policy with probability ε.

4. For better exploration, an experience composed of a

tuple, such as (state φ(s), action a, reward r, new state

φ(s’)) is in D selected randomly at every training step.

5. Sample a random mini-batch of transitions from D,

such as (state φ(s), action a, reward r, new state φ(s’))

6. For non-terminal state, reward based on maxα’Q*((φ

(st),a‘);θ) is decayed by γ or for terminal state, reward

is the current reward, r.

7. The weights for performing the gradient descent (rj+γ

maxα’Q*(ϕ(sj+1),α’;θ)−Q(ϕ(sj),αj;θ)) for a target DQN

with replay memories with probability random 1.

8. Steps 3–7 are repeated for training.

9. Before the next episode, the weights for performing the

gradient descent (rj+γmaxα’Q*(ϕ(sj+1),α’;θ)−Q(ϕ(sj),αj;

θ)) for a target DQN with the whole memories in

every step with probability random 2.

 10. Steps 2–9 are repeated for training.

(그림 3) 본 논문에서 제안하는 알고리즘의 의사코드

(Figure 3) The pseudo code of the proposed

algorithm

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도

한국 인터넷 정보학회 (21권5호) 5

4. Performance Evaluation

We exploit OpenAI Gym [8] for our proposed algorithms,

DQN with TD and MC balance at random. We consider

classic control environments in OpenAI Gym, such as

CartPole-V0 [9]. With benchmark approaches [1, 3], we

exploit an experience replay for better exploration. Moreover,

in our proposed method, Q-learning stores past experiences

at each time step in a buffer D, which is known as a replay

memory. Our emulators from OpenAI Gym [8] can apply

mini-batch updates in D. After the experience replay memory

D, the agent’s actions of the emulator follow ε-greedy policy.

In terms of DQN with the replay memory D for better

exploration, we also follow the theory of the target

Q-network of the breakthrough researches in [1, 3]. The

Q-learning agent calculates the TD-error with the current

estimated Q-value[2]. Updates based on the target network is

slower than those on the current network.

In CartPole-V0 [9], a pole is attached with an unactuated

joint to a cart moving along a frictionless track. It is

controlled by forcing +1 or −1 to the cart. The pole starts

upright, and the goal is to prevent it from falling over [9].

A +1 reward is given to every time step in which the pole

remains upright [9]. The episode stops when the pole is more

than 15° from the vertical direction or the cart moves more

than 2.4 units from the center [9]. In our simulation,

CartPole-V0 defines “solving” as if the average reward is

more than 490 or equal to 500 over 10 consecutive runs [10].

The agent of CartPole-V0 receives −100 reward if it falls

over prior to the max-length of the episode [10]. Our

proposed algorithm with MC and TD balance at random is

implemented using TensorFlow [11] and Keras [12]. For the

proposed algorithm, we follow similar previous studies [10].

Figure 3 shows the pseudo code of the proposed algorithm.

For CartPole-V0 [9] by OpenAI Gym [8], the

discount-factor, GAMMA = 0.95, the learning rate, ALPHA

= 0.001, the size of replay buffer, D = 10,000, the size of

mini-bach = 64, the maximum of exploration = 1.0, the

minimum of exploration = 0.01, and the random epsilon

decay = 0.995 are the same as with the previous DQN

studies [10].

In Figure 3, we consider that Q_target for TD-learning is

trained every episode, but G_target for MC-learning is

trained in the end of whole episodes. The mixture update are

accomplished based on the probabilities 1 and 2. Followed

by the observables of the environment, 1 and 2 are able

to be marginally interacted by system designers. For

G_target, we should check the length of the whole episodes.

Moreover, we suggest that when the roll-out is toward to the

maximum length, training of the AI agent with MC-based

will be finished earlier than the maximum length because the

value function can be approximately close to the best

prediction. Therefore, we do not need the whole episodes any

more.

(그림 4) 결과 중 가장 최고의 경우

(Figure 4) The best case

(그림 5) 결과 중 가장 최악의 경우

(Figure 5) The worst case

Figure 4 and Figure 5 display most of the results for best

and worst cases, respectively. The proposed algorithm,

off-policy RL, DQN with MD and TD balance at random

can yield better results than the class DQN using only

TD-learning in most cases. In the best case, our proposed

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도

6 2020. 10

algorithm reaches the maximum reward earlier than the

classic DQN. However, in the worst case, our proposed

algorithm is almost same with the class DQN. Therefore, we

can attempt a different type of deep neural network (DNN)

or hyper-parameter settings to demonstrate that our proposed

model can enhance the exploration with only MC and TD

balance at random. We are convinced that we can enhance

the behavior policy. For the purpose, we have more runs.

Table 1 shows that the quantitative comparison between our

proposed algorithm and the class DQN using only

TD-learning. Actually, most cases are similar. However, in

therms of “in score 150”, our proposed algorithm is better

than the classic DQN using only TD-learning. After this we

consider that the sample-efficient policy gradient such as

DDPG would be possible to have better results. Our next

step is about to combine MC and TD not only off-policy RL,

DQN but also policy gradient methods, such as DDPG [6,

13, 14]. Moreover, we will attempt to exploit the different

type of deep neural networks such as CNN. [14]

(표 1) 정량적 비교 결과

(Table 1) Quantitative Comparison

5. Conclusion

In this paper, we have suggested the technique to exploit

a random balance with a mixture of TD and MC in

off-policy RL, representative DQN. We demonstrate DQN

with TD and MC balance at random, which is trained with

a random probability 1 for performing a gradient descent of

TD and 2 for performing a gradient descent of MC. We

attempt to exploit a random balance with a mixture of TD

and MC in RL without any complicated formulas for better

exploration and easier deployment. We also demonstrate that

a well-performed TD learning are also granted special favor

of the mixture of TD and MC through an experiments in

OpenAI Gym. Our proposed method goes through

experimental comparison with the classic DQN using only

TD-learning. The result shows that our proposed algorithm

has shorter training time than the classic DQN using only

TD-learning. We will attempt to exploit a random balance

with a mixture of TD and MC in policy gradient of RL and

the different type of deep neural network.

 참고문헌(Reference)

[1] D. Silver, A. Huang, C. J. Maddison, A.Guez, L.t

Sifre, G. V. D. Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam, M. Lanctot, et al.

Mastering the game of go with deep neural networks

and tree search. Nature, Vol 529, No. 7587, pp. 484

–489, 2016. https://doi.org/10.1038/nature16961

[2] R. S. Sutton, A. G. Barto. Reinforcement learning:

An introduction, volume 1. MIT press Cambridge,

1998. https://doi.org/10.1016/S1364-6613(99)01331-5

[3] Mnih, Volodymyr, et al. “Playing atari with deep

reinforcement learning.” NIPS 2013.

http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

[4] A. Amiranashvili, A. Dosovitskiy, V. Koltun and T.

Brox, TD OR NOT TD: Analyzing The Role Of

Temporal Differencing In Deep Reinforcement

Learning, ICLR 2018. http://arxiv.org/abs/1806.01175

[5] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, S.

Levine, Q-Prop: Sample-Efficient Policy Gradient

with An Off-Policy Critic, ICLR 2017.

http://arxiv.org/abs/1611.02247

[6] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez,

Y. Tassa, D. Silver, and D. Wierstra, Continuous

control with deep reinforcement learning, ICLR

2016. https://arxiv.org/abs/1509.02971

[7] V. Nair and G. E. Hinton, Rectified Linear Units

Improve Restricted Boltzmann Machines, ICML

2010.

https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf

[8] OpenAI Gym: https://gym.openai.com

[9] Cart-Pole-V0:

https://github.com/openai/gym/wiki/Cart-Pole-v0

[10] Cart-Pole-DQN:

https://github.com/rlcode/reinforcement-learning-kr/bl

ob/master/2-cartpole/1-dqn/cartpole_dqn.py, 8 Jul.

2017.

https://github.com/rlcode/reinforcement-learning-kr/blob/master/2-cartpole/1-dqn/cartpole_dqn.py

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도

한국 인터넷 정보학회 (21권5호) 7

◐ 저 자 소 개 ◑

김 차 영(Chayoung Kim)

1996년 숙명여자대학교 전산학과(이학사)

1998년 숙명여자대학교 전산학과(이학석사)

2006년 고려대학교 컴퓨터학과(이학박사)

2005년~2008년 한국과학기술정보연구원 선임초청연구원
2008년~2017년 경기대학교, 컴퓨터과학과, 대우교수
2018년~현재 경기대학교, 융합교양대학, 조교수
관심분야 : 빅데이터, 머신러닝, 딥러닝 강화학습, IoT

E-mail : kimcha0@kgu.ac.kr

박 서 희(Seohee Park)

2017년 경기대학교 컴퓨터과학과 졸업(학사)

2018년 경기대학교 대학원 컴퓨터과학과 졸업(석사)

2018년 전자부품연구원(KETI) 휴먼케어시스템연구센터 위촉연구원
2018년 12월~현재 한국통신(KT) 융합기술원 AI연구소 전임연구원
관심분야 : 인간 자세 추정, 객체 탐지, 인공지능
E-mail : park.seohee@kt.com

이 우 식(Woosik Lee)

2003년 3월~2009년 2월 경기대학교 컴퓨터과학과 졸업(학사)

2009년 3월~2011년 2월 경기대학교 대학원 컴퓨터과학과 졸업(석사)

2011년 3월~2016년 2월 경기대학교 대학원 컴퓨터과학과 졸업(박사)

2016년 4월~2017년 2월 한국건설기술연구원 ICT융합연구소 박사후연구원
2017년 3월~2018년 4월 경기대학교 컴퓨터과학과 연구교수
2018년 4월~현재 사회보장정보원 사회보장데이터연구소 부연구위원
관심분야 : 빅데이터, 머신러닝, 데이터마이닝, 센서네트워크
E-mail : wslee@ssis.or.kr

[11] Tensorflow: https://github.com/tensorflow/tensorflow,

31 Oct. 2019.

[12] Keras : https://keras.io/api/ Oct. 2019.

[13] G. Sun, G. O. Boateng, H. Huang and W. Jiang, "A

Reinforcement Learning Framework for Autonomous

Cell Activation and Customized Energy-Efficient

Resource Allocation in C-RANs," KSII Transactions

on Internet and Information Systems, vol. 13, no. 8,

pp. 3821-3841, 2019.

https://doi.org/10.3837/tiis.2019.08.001

[14] R. Mu and X. Zeng, "A Review of Deep Learning

Research," KSII Transactions on Internet and

Information Systems, vol. 13, no. 4, pp. 1738-1764,

2019. https://doi.org/10.3837/tiis.2019.04.001

