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요    약

강화학습에서 근사함수로써 사용되는 딥 인공 신경망은 이론적으로도 실제와 같은 근접한 결과를 나타낸다. 다양한 실질적인 성

공 사례에서 시간차 학습(TD) 은 몬테-칼로 학습(MC) 보다 더 나은 결과를 보여주고 있다. 하지만, 일부 선행 연구 중에서 리워드가 
매우 드문드문 발생하는 환경이거나, 딜레이가 생기는 경우, MC 가 TD 보다 더 나음을 보여주고 있다. 또한, 에이전트가 환경으로부

터 받는 정보가 부분적일 때에, MC가 TD보다 우수함을 나타낸다. 이러한 환경들은 대부분 5-스텝 큐-러닝이나 20-스텝 큐-러닝으로 

볼 수 있는데, 이러한 환경들은 성능-퇴보를 낮추는데 도움 되는 긴 롤-아웃 없이도 실험이 계속 진행될 수 있는 환경들이다. 즉, 긴 
롤-아웃에 상관없는 노이지가 있는 네트웍이 대표적인데, 이때에는 TD 보다는 시간적 에러에 견고한 MC 이거나 MC와 거의 동일한 

학습이 더 나은 결과를 보여주고 있다. 이러한 해당 선행 연구들은 TD가 MC보다 낫다고 하는 기존의 통념에 위배되는 것이다. 다시 

말하면, 해당 연구들은 TD만의 사용이 아니라, MC와 TD의 병합된 사용이 더 나음을 이론적이기 보다 경험적 예시로써 보여주고 있
다. 따라서, 본 연구에서는 선행 연구들에서 보여준 결과를 바탕으로 하고, 해당 연구들에서 사용했던 특별한 리워드에 의한 복잡한 

함수 없이, MC와 TD의 밸런스를 랜덤하게 맞추는 좀 더 간단한 방법으로 MC와 TD를 병합하고자 한다. 본 연구의 MC와 TD의 랜덤 

병합에 의한 DQN과 TD-학습만을 사용한 이미 잘 알려진 DQN과 비교하여, 본 연구에서 제안한 MC와 TD의 랜덤 병합이 우수한 학습 
방법임을 OpenAI Gym의 시뮬레이션을 통하여 증명하였다. 

☞ 주제어 : 온- 앤 오프-폴리시, 시간차 학습, 몬테 칼로 학습, 강화학습, 분산과 편차의 균형

ABSTRACT

Deep neural networks(DNN), which are used as approximation functions in reinforcement learning (RN), theoretically can be 

attributed to realistic results. In empirical benchmark works, time difference learning (TD) shows better results than Monte-Carlo learning 

(MC). However, among some previous works show that MC is better than TD when the reward is very rare or delayed. Also, another 

recent research shows when the information observed by the agent from the environment is partial on complex control works, it 

indicates that the MC prediction is superior to the TD-based methods. Most of these environments can be regarded as 5-step 

Q-learning or 20-step Q-learning, where the experiment continues without long roll-outs for alleviating reduce performance degradation. 

In other words, for networks with a noise, a representative network that is regardless of the controlled roll-outs, it is better to learn MC, 

which is robust to noisy rewards than TD, or almost identical to MC. These studies provide a break with that TD is better than MC.  

These recent research results show that the way combining MC and TD is better than the theoretical one. Therefore, in this study, based 

on the results shown in previous studies, we attempt to exploit a random balance with a mixture of TD and MC in RL without any 

complicated formulas by rewards used in those studies do. Compared to the DQN using the MC and TD random mixture and the 

well-known DQN using only the TD-based learning, we demonstrate that a well-performed TD learning are also granted special favor 

of the mixture of TD and MC through an experiments in OpenAI Gym. 

☞ keyword : Deep Q-Network, Temporal Difference, Monte Carlo, Reinforcement Learning, Variation and Bias Balance
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1. Introduction

Deep neural networks (DNN) as function approximators 

in reinforcement learning (RL) [1, 2] has significantly 

enlarged dealing with real environment. Theoretical results 

could be helped mainly on linear function approximators 

within a set of narrow environment. However, their 

theoretical assumptions do not consider the genuine 

real-world application domains of deep RL, such as high 

input dimensionality of feature patterns or non-linear function 

approximators. Such expressive parameterization in the DNN 

also brings up thousands of practical issues. It tends to be 

sensitive to hyper-parameter. Moreover, poor hyper-parameter 

settings lead to unstable or non-convergent training or  

diverge to infinity. Also, Deep RL [3] is more likely to 

exhibit high sample complexity, which is impractical to the 

real-world problems like DNN. It is regarded that batch 

policy gradient RL offers stability of learning than Deep RL. 

However, it leads to the high-variance requiring large batches 

because their estimations are continually growing. So, 

TD-style [4] techniques, for example Q-learning or 

actor-critic, are regarded helpful for sample-efficient but still 

biased, and require expensive hyper-parameters setting for 

better stabilization. Also, MC of RL [1, 2] is regarded as that 

it can offer nearly unbiased because MC policy gradient is 

common for on-policy techniques. However, MC might be 

occasionally suffering from high variance. Therefore, to deal 

with high variance gradient and such a difficult optimal 

parameterization, there are some previous valuable research 

works, such as mixing value-based back-ups in MC [4]. 

However, most those works require huge amount of samples 

and some complicated formular of rewards for dealing with 

these real-world problems, which is very intensive in terms 

of Big-Data. Off-policy Q-learning [3, 5] and off-policy 

actor-critic [4] can use all samples by TD-learning combined 

with experience replay in deep neural network for 

sample-efficient. Such architectures are  significantly useful 

in terms of Big-Data samples. Still, there are some issues on 

a convergence of TD-learning, which is not guaranteed with 

non-linear function approximators. Non-convergence and 

instability issues still require extensive hyper-parameter 

tuning and human-interactions[6]. 

In some benchmark works, TD based on a combination of 

MC theory and dynamic programming (DP) [2, 4] theory has 

been used for better empirical results rather than theoretical 

results. Moreover, some recent works show that 

finite-horizon MC is a little superior than TD, when it comes 

to sparse or delayed rewards. Moreover, recent researches 

show that a technique based on MC prediction might 

outperform TD-based methods on complex control works in 

partially observables. Most of these environments can be 

regarded as 5-step Q-learning or 20-step Q-learning, where 

the experiment continues without long roll-outs for 

alleviating deterioration of performance results. In other 

words, for networks with a noise, a representative network 

that is regardless of the controlled roll-outs, it is better to 

learn MC, which is robust to noisy rewards than TD, or 

almost identical to MC. These studies provide a break with 

that TD is better than MC. The key point of recent research 

results is to suggest the ways combining MC and TD [4]. In 

value-based deep RL architectures with bootstrapping 

samples of Big-Data such as DQN [3], TD have been 

regarded as superior than MC. However, recent empirical 

researches have shown that MC is more stable to noisy and 

sparse rewards or a balance of TD and MC [4] are more 

practical for training an AI agent. Our study focus on 

discrete action sets and algorithms involving a prediction of 

value function, which can be learned via a combination of 

TD and MC to make value-based methods perform better. 

Therefore, in this study, based on the results shown in 

previous researches, we attempt to exploit a random balance 

with a mixture of TD and MC in RL without any 

complicated formulas by rewards used in those researches do. 

We also demonstrate that DQN with a well-performed TD 

leaning are also granted special favor of the mixture of TD 

and MC at random. Moreover, our proposed algorithm goes 

through experimental comparison with the well-known DQN 

using only the TD-based learning. The result shows that our 

proposed algorithm has shorter training time than the 

well-known DQN.

2. BackGrounds

Reinforcement learning (RL) consists of an artificial 
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intelligence (AI) agent acting in an environment over discrete 

time-steps. An environment is defined by states s, actions a, 

a reward function r : s×a→r, a transition probability 

p(st+1|st,at) and a discount factor γ∈ [0,1]. Let π∗ denote an 

optimal policy such as Qπ∗(s,a) ≥ Qπ(s,a) for every s ∈ S, 

a ∈ A and any policy π. In terms of Q-learning, the policy 

π is a maximum in every update of Big-Data. The objective 

of the equation is to find a policy π (at|st) to maximize the 

expected sum of all future rewards through the episode such 

as Rt = ∑ Ti=t ri. (1). To avoid divergence for long episodes, 

long-distant rewards can be decayed by a discount factor γ 

or truncated until the explicit steps τ (horizon) such as Rγ
t 

= ∑ Ti=t γ
i−tri = rt + γrt+1+ γ2rt+2+ ... ; Rτt = ∑t+τ

i=tri. (2). 

For a given policy π, the value function and the action-value 

function are defined as expected returns that are conditioned 

on observation or the observation-action pair respectively 

such as V
π(st) = Eπ[Rt|st], Qπ(st,at)=EπRt|st,at]. (3). Optimal 

value and action-value functions are defined such as V*(st) = 

maxπV
π(st), Q*(st,at) = maxπQ

π(st,at). (4). In value-based RL 

such as Q-learning, the value or action-value are estimated 

by a function approximator V with parameters θ. The 

function approximation is trained by minimizing a loss 

between the current estimate and a target value such as L(θ) 

= (V(st;θ) − Vtarget)
2.(5). Updates on the target each step 

makes the value or action-value stable. 

Monte Carlo (MC) trains the AI agent with the formular,  

Vtarget = Rγt or Vtarget  = Rτt. [0,1] This target requires 

propagation of the forward before a training step can take 

place, for example by the step τ for finite-horizon return Rτt 

or the end of the episode for the discounted return Rγt. It 

might increase the variance of the target value. However, it 

cannot be biased because it is not approximated. An 

alternative to MC training is temporal difference (TD), which 

estimates the return by bootstrapping samples of Big-Data 

from the function approximators, after acting for a fixed 

number of steps n such as Vtarget = ∑t+n−1
i=tγ

i−tri+γ
nV(st+n;

θ). (6). TD learning is used within finite-horizon returns. TD 

applied to the action-value function is the well-known 

Q-learning.

Usually, the classic Q-learning algorithms are used in 

synergy with deep neural networks, which can oscillate or 

diverge because the Q-value estimated by Q-learning 

algorithm are approximated. This limitation is caused by 

correlated Big-Data or continuously repeated updates.  

Therefore, some benchmark works [1, 2, 3] use an 

experience replay memories which samples at random from 

the mini-batch (st, at, rt, st+1) from the memory buffers, D. So,  

the training are smoothly over many experience Big-Data. It 

is explicit to take advantage of the deep neural network 

(DNN) in RL because the all experiences of the trajectories,  

is buffered in D for Q(st+1, at+1,θ) at random and  also reused 

by MC training. Figure 1 shows that Q-learning goes into 

DNN. So, it is called DQN, which can take advantage of the 

experience replay memories. 

(그림 1) DQN 알고리즘 [3]

(Figure 1) The DQN algorithm [3]

The Deep Neural Network (DNN) architecture is based on 

multiple stacked layers of neurons. A neuron is a non-linear 

transformation architecture of the linear sum of Big-Data 

sample inputs. Normally, the first layer models the data 

itself. Stacked hidden layers in the Neural Network(NN) is 

constructed as arrays of neurons receiving the inputs from 

the previous layer. The a neuron activator as a function on 

the top of the stacked layers in the NN is using composite 

functions, which show that supervised training of a DNN 

with non-linearities architecture is faster. So, most stacked 

hidden layers are composed of the activators such as Rectifi

ed Linear Units (ReLU) [7]. 

3. THE PROPOSED ALGORITHM

For better exploration and bias-variance balance, some 

researchers suggests a mixture of TD and MC [4], which is 
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applicable to high-dimensional discrete environments, 

partially observable or sparse by using DQN with replay 

memories. TD-based AI training has been used for more 

frequently and efficiently because of empirical reasons since 

the breaking results ATARI-BREAKOUT [3]. Based on the 

research [4], we propose the technique to exploit a random 

balance with a mixture of TD and MC in RL training, 

specifically DQN. Figure 2 shows our proposed algorithm of 

off-policy RL, DQN with Monte Carlo and Temporal 

Difference Balance at random. Mixture of MC and TD is 

accomplished using 1 and 2 random probabilities in [0, 1] 

for TD and MD, respectively. 

(그림 2) 본 논문에서 제안하는 알고리즘

(Figure 2) The proposed algorithm

We attempt to combine Monte Carlo and Temporal 

Difference with the truncated-steps (horizon) through the 

whole roll-out. Our proposed algorithm is different from the 

results of the previous research [4]. It is simpler and random 

because we are targeting the goal without any complicated 

formula for the reward of the truncated-steps of exploration. 

We follow a random probability 1 for performing a gradient 

descent of TD and 2 for performing a gradient descent of 

MC. 2 is ( 1 - 1 ). So, the expression is yj = 1* y_TD 

+ 2 * y_MC. It is fundamentally based on a random policy 

with 1 and 2, respectively, for TD and MC. We 

demonstrate that both TD and MC methods benefit from our 

method through experimental comparison of the classic DQN 

using only TD on high-dimensional discrete action 

environments, such as the well-known environment OpenAI 

Gym [8].

3.1 Algorithm Description

<off-policy RL, DQN with Monte Carlo and Temporal 

Difference Balance>

1. Initialize replay memory D and action-value function Q 

with random weights

2. Initialize the sequence with the start state, s.

3. The agent learns the policy maxαQ*(φ(st),a);θ) or 

follows another policy with probability ε.

4. For better exploration, an experience composed of a 

tuple, such as (state φ(s), action a, reward r, new state 

φ(s’)) is in D selected randomly at every training step.

5. Sample a random mini-batch of transitions from D, 

such as (state φ(s), action a, reward r, new state φ(s’)) 

6. For non-terminal state, reward based on maxα’Q*((φ

(st),a‘);θ) is decayed by γ or for terminal state, reward 

is the current reward, r. 

7. The weights for performing the gradient descent (rj+γ

maxα’Q*(ϕ(sj+1),α’;θ)−Q(ϕ(sj),αj;θ)) for a target DQN 

with replay memories with probability random 1. 

8. Steps 3–7 are repeated for training.

9. Before the next episode, the weights for performing the 

gradient descent (rj+γmaxα’Q*(ϕ(sj+1),α’;θ)−Q(ϕ(sj),αj;

θ)) for a target DQN with the whole memories in 

every step with probability random 2. 

 10. Steps 2–9 are repeated for training.

(그림 3) 본 논문에서 제안하는 알고리즘의 의사코드

(Figure 3) The pseudo code of the proposed 

algorithm
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4. Performance Evaluation

We exploit OpenAI Gym [8] for our proposed algorithms,  

DQN with TD and MC balance at random. We consider 

classic control environments in OpenAI Gym, such as 

CartPole-V0 [9]. With benchmark approaches [1, 3], we 

exploit an experience replay for better exploration. Moreover, 

in our proposed method, Q-learning stores past experiences 

at each time step in a buffer D, which is known as a replay 

memory. Our emulators from OpenAI Gym [8] can apply 

mini-batch updates in D. After the experience replay memory 

D, the agent’s actions of the emulator follow ε-greedy policy. 

In terms of DQN with the replay memory D for better 

exploration, we also follow the theory of the target 

Q-network of the breakthrough researches in [1, 3]. The 

Q-learning agent calculates the TD-error with the current 

estimated Q-value[2]. Updates based on the target network is 

slower than those on the current network.

In CartPole-V0 [9], a pole is attached with an unactuated 

joint to a cart moving along a frictionless track. It is 

controlled by forcing +1 or −1 to the cart. The pole starts 

upright, and the goal is to prevent it from falling over [9]. 

A +1 reward is given to every time step in which the pole 

remains upright [9]. The episode stops when the pole is more 

than 15° from the vertical direction or the cart moves more 

than 2.4 units from the center [9]. In our simulation, 

CartPole-V0 defines “solving” as if the average reward is 

more than 490 or equal to 500 over 10 consecutive runs [10]. 

The agent of CartPole-V0 receives −100 reward if it falls 

over prior to the max-length of the episode [10]. Our 

proposed algorithm with MC and TD balance at random is 

implemented using TensorFlow [11] and Keras [12]. For the 

proposed algorithm, we follow similar previous studies [10]. 

Figure 3 shows the pseudo code of the proposed algorithm. 

For CartPole-V0 [9] by OpenAI Gym [8], the 

discount-factor, GAMMA = 0.95, the learning rate, ALPHA 

= 0.001, the size of replay buffer, D = 10,000, the size of 

mini-bach = 64, the maximum of exploration = 1.0, the 

minimum of exploration = 0.01, and the random epsilon 

decay = 0.995 are the same as with the previous DQN 

studies [10].

In Figure 3, we consider that Q_target for TD-learning is 

trained every episode, but G_target for MC-learning is 

trained in the end of whole episodes. The mixture update are 

accomplished based on the probabilities 1 and 2. Followed 

by the observables of the environment, 1 and 2 are able 

to be marginally interacted by system designers. For 

G_target, we should check the length of the whole episodes. 

Moreover, we suggest that when the roll-out is toward to the 

maximum length, training of the AI agent with MC-based 

will be finished earlier than the maximum length because the 

value function can be approximately close to the best 

prediction. Therefore, we do not need the whole episodes any 

more. 

(그림 4) 결과 중 가장 최고의 경우

(Figure 4) The best case

(그림 5) 결과 중 가장 최악의 경우

(Figure 5) The worst case

Figure 4 and Figure 5 display most of the results for best 

and worst cases, respectively. The proposed algorithm, 

off-policy RL, DQN with MD and TD balance at random 

can yield better results than the class DQN using only 

TD-learning in most cases. In the best case, our proposed 
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algorithm reaches the maximum reward earlier than the 

classic DQN. However, in the worst case, our proposed 

algorithm is almost same with the class DQN. Therefore, we 

can attempt a different type of deep neural network (DNN) 

or hyper-parameter settings to demonstrate that our proposed 

model can enhance the exploration with only MC and TD 

balance at random. We are convinced that we can enhance 

the behavior policy. For the purpose, we have more runs. 

Table 1 shows that the quantitative comparison between our 

proposed algorithm and the class DQN using only 

TD-learning. Actually, most cases are similar. However, in 

therms of “in score 150”, our proposed algorithm is better 

than the classic DQN using only TD-learning. After this we 

consider that the sample-efficient policy gradient such as 

DDPG would be possible to have better results. Our next 

step is about to combine MC and TD not only off-policy RL, 

DQN but also policy gradient methods, such as DDPG [6, 

13, 14]. Moreover, we will attempt to exploit the different 

type of deep neural networks such as CNN. [14]

(표 1) 정량적 비교 결과

(Table 1) Quantitative Comparison

5. Conclusion

In this paper, we have suggested the technique to exploit 

a random balance with a mixture of TD and MC in 

off-policy RL, representative DQN. We demonstrate DQN 

with TD and MC balance at random, which is trained with 

a random probability 1 for performing a gradient descent of 

TD and 2 for performing a gradient descent of MC. We 

attempt to exploit a random balance with a mixture of TD 

and MC in RL without any complicated formulas for better 

exploration and easier deployment. We also demonstrate that 

a well-performed TD learning are also granted special favor 

of the mixture of TD and MC through an experiments in 

OpenAI Gym. Our proposed method goes through 

experimental comparison with the classic DQN using only 

TD-learning. The result shows that our proposed algorithm 

has shorter training time than the classic DQN using only 

TD-learning. We will attempt to exploit a random balance 

with a mixture of TD and MC in policy gradient of RL and 

the different type of deep neural network. 
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