J. Internet Comput. Serv.

ISSN 1598-0170 (Print) / ISSN 2287-1136 (Onling)
http://www.jics.or kr

Copyright © 2020 KSlI

A Flexible and Expandable Representation
Framework for Computational Science Data™

Jaesung Kim', Sunil Ahn®, Jeongchoel Le¢’, and Jongsuk Ruth Lee*

ABSTRACT

EDISON is a web-based platform that provides easy and convenient use of simulation software on high-performance computers. One
of the most important roles of a computational science platform, such as EDISON, is to post-process and represent the simulation results
data so that the user can easily understand the data. We interviewed EDISON users and collected requirements for post-processing
and represent of simulation results, which included i) flexible data representation, ii) supporting various data representation components,
and i) flexible and easy development of view template. In previous studies, it was difficult fo develop or contribute data representation
components, and the view femplaftes were not able to be shared or recycled. This causes a problem that makes it difficult to create
ecosystemns for the representation fool development of numerous simulation software. EDISON-VIEW is a framework for post-processing
and representing simulation results produced from the EDISON platform. This paper proposes various methods used in the design and
development of the EDISON-VIEW framework to solve the above requirements and problems. We have verified its usefulness by applying
it fo simulation soffware in various fields such as material, computational fluid dynamics, computational structural dynamics, and

computational chemistry

= keyword: Computational Science Data, Visudlization, Representation, Simulation, EDISON

1. Introduction

EDISON is a platform that helps students learn
computational science research methodologies by supporting
high-performance computer and simulation software. [1]
EDISON has over 400 simulation softwares in 7 special fields
and is being used by tens of thousands of users. [2] One of
the most important roles of a computational science platform,
such as EDISON, is to post-process the simulation data and
represent the post-processed data so that the user can easily
understand the data. [3] The simulation data is a set of raw
files, and it is often difficult to intuitively understand the data.
Therefore, instead of representing the raw file as it is, it is
necessary to refine it through post-processing and then
represent it. Post-processing means extracting the desired
information from the simulation data, processing the data into

1,2,3,4 Center for Computational Science Platform, Korea Institute of

Science and Technology Information, Daejeon, 34141, Korea

* Corresponding author: Sunil Ahn (siahn@kisti.re.kr)

[Received 12 February 2020, Reviewed 26 February 2020(R2 1

April 2020), Accepted 16 April 2020]

v¢ This research was supported by KISTI Program (No. K-20-
L02-C05-S01), the EDISON Program through the National
Research Foundation of Korea (NRF) (No. NRF-2011-0020576).

v¢ A preliminary version of this paper was presented at APIC-IST
2019.

an understandable form, and visualizing the post-processed
data.

The EDISON platform provides the service to extract
metadata and refine the data to the desired form through
post-processing the data through a virtualized container
environment for each type of simulation data. [4] In addition,
we studied how to represent the post-processed data. We
collected requirements related to the representation of the
simulation data through interviews with simulation software
developers participating in the EDISON project. The results of
the requirements are as follows. First, the developers wanted
to represent various types of simulation data. The simulation
data vary depending on the simulation software. In addition
to basic data such as number, string, array, and image,
three-dimensional data, such as molecular structure in
computational chemistry and polygonal data in structural
dynamics, are produced. The developers wanted this data to
be visible within the EDISON platform. Thus, the EDISON
platform required flexibility in data representation to support
multiple data formats. Second, the developers wanted to freely
represent the data without IT knowledge such as HTML. On
a web-based platform, constructing a view for representing the
data requires knowledge such as HTML. But for simulation
software developers, learning this knowledge is a

Journal of Internet Computing and Services(JICS) 2020. June.: 21(3): 41-51 41

http://dx.doi.org/10.7472/jksii.2020.21.3.41

A Flexible and Expandable Representation Framework for Computational Science Data

time-consuming job. They want to freely layout the data. For
example, a software developer in computational chemistry
wants to organize the information derived from
post-processing as follows. The developer requests that the
material properties information be displayed in the form of a
table on the left side of the screen, the structural information
should be visualized and placed on the right side of the
screen, and the numerical values related to the structure
should be placed below. Another field, computational fluid
dynamics, a developer requires that the simulation input
values be represented in the form of a table at the top of the
screen and that the analysis results be placed at the bottom
of the screen in three-dimensional representation. They also
demanded an environment where users can share and reuse
the configured data screens. Third, the developers requested
the use of various web representation tools that are already
developed. Instead of developing new representation tools,
they wanted to reduce the development costs and increase the
productivity by recycling good open-source tools that were
already developed. Currently, there are well-developed tools
such as Jsmol[5], Nglviewer[6], and 3Dmol[7] for represent
ing molecular structures, Paraview glance[8] for representing
polygonal data. The developers in computational chemistry
demanded the use of Jsmol for molecule representation, and
the developers in computational fluids dynamic and structual
dynamics demanded the use of Paraview for polygonal
structure representation. The software developers thought that
importing the open-source representation tools, developed by
web-developers all around the world, into the EDISON
platform is essential for effective representation. Thus, the
EDISON platform required a scalable environment for easily
registering new representation tools.

The proposed approach[9] in the existing studies is
difficult to flexibly represent the data, and it is not easy to
develop or contribute the data representation component. This
causes a problem that makes it difficult to create an
ecosystem for the development of representation tools for a
large number of simulation software existing in the platform.
In a computational science platform like EDISON, it is
important that the environment and ecosystem that anyone can
easily develop and share the representation tools as much as
sharing software and its content. [10] We developed the
EDISON-VIEW framework to represent the simulation data

based on the requirements of the EDISON communities. This
paper presents various methods used in the development of
EDISON-VIEW to solve the above requirements and
problems. The EDISON-VIEW provides a view editing
service that can display various types of post-processed data
on the view in a simple notation and provide various
representation components that can represent the various data
such as images, charts, morecular structures, polygonal
structures, etc. Second, the EDISON-VIEW solves the
representation flexibility problem by allowing the data to be
placed freely using the drag-and-drop method. It also provides
the ability to share and reuse through the free import and
export environment of the configured data screens. Third, the
EDISON-VIEW provides a way to solve representation tool
scalability problem by simply importing various open-source
web representation tools into the framework.

The composition of this paper is as follows. Section 2
introduces the related work, and Section 3 presents the
method used in the EDISON-VIEW framework to solve the
requirements of representation gathered from the EDISON
communities. Section 4 presents examples of the
EDISON-VIEW framework in each field, and Section 5
concludes this paper.

First, the EDISON-VIEW uses AngularJS’s notation to
easily and flexibly represent JSON-formatted metadata.
Angular]S uses {{data}} notation to represent the data. When
displaying ‘reducedFormula’ in the form of string and
‘volume’ in the form of number on the screen, users can
represent them in the form of {{dm.reducedFormula}} and
{{dm.volume}}. And if the users want to extract only specific
data from array, it is possible to represent individual data in
the same way as {{dm.lattice [0]}}, {{dm.lattice [1]}}, and
{{dm.lattice [2]}}.

2. Related Work

The NanoHub[9] Project, which was started in 1995 at
Purdue University with the aim of (1) developing and
collecting computational science software related to the
nanotechnology field, (2) providing an easy way to utilize it
in an online environment, and (3) providing computational
science education for nanoscience. It is HubZero[11] Project

42

2020. 6

A Flexible and Expandable Representation Framework for Computational Science Data

[Step L. Simulation]

[Step 3. Store Data In DB and File System]

[Actual View: 2D_Incomp_P]

SW: 2D_Incomp_P

SW. KDFT

Catabase

datase:ID: 1000
datzTyse: 20 Jncomp P
meta:

{aoa: 1674

{ finalEnergy: 83.33
Fles c:637 volume: 57.3
tesydem | cdt 1000 density: 22887

datesetiD: 100-
dataType: KDFT
meta:

¥ e 0]
— . . -
% % il :

[Step 2. Extract Information & Process Data]

Simu ation Raw Data

sase .
sesssnios

Type: 20 Tncarrp P Type: KDFT [Step 4. Design View Template By EDISON-VIEW Framework o
\ View Templates
D
source _ Type:20 Incorp P Type: KDFT

g

s

[Actual View: KDFT]

Post-processor

tools as
nents “,"

‘eT" L

ol

E}dl'ld\'!d information {called wnhdnh) and Procassed data 2

B B B B| ve
Module A Module B Module C Module D

Modularization

tools - — ==
B

IEW

(==
m Conskils ¢ imh@%

(Figure 1)

that started with the success of the NanoHub project. The
HubZero Project aims to develop and disseminate
computational science software and platform that utilizes
computing resources. Rappture[12] is a toolkit that makes it
easy to create I/O interface of computational science software
on the HubZero platform. The I/O interfaces of the Rappture
are defined in XML format and expressed in GUI (Graphical
User Interface). The mapping and conversion from I/O of the
Rappture to I/O of actual software can be defined in various
languages. The Rappture aims to make the I/O interface of
computational science software easily, but it has the following
disadvantages. First, the layout of I/O interfaces is fixed.
Second, 10 components such as graph, molecule, and
polygonal data are provided as basic components for I/O

representation, but it is very difficult to add and develop new

Example: The steps from simulation to data representation

components. Third, mapping and conversion code for each
software is not shared among users, resulting in poor
reusability.

3. EDISON-VIEW Framework

This section introduces the solutions used in the
EDISON-VIEW framework to solve the EDISON
community’s requirements. The whole step of post-processing
and representation of the simulation data of the EDISON
platform is shown in Fig 1. The simulation data generated
from each simulation software is processed into metadata in
a JSON format and standardized files through post-processing
modules for each type. The JSON metadata and standardized
files are assigned a dataset id and stored in the database and

st olElY HE5ts (21233)

43

A Flexible and Expandable Representation Framework for Computational Science Data

file system separately. With the EDISON-VIEW framework,
users can then quickly and easily create view templates using
the data stored in the platform. The created view templates
are stored in the database for sharing and reusing. When the
users search the actual dataset, the view is created by
inputting the actual data value into the template.

3.1 Flexible Data Representation

In the EDISON-VIEW framework, users can easily
configure the data view template for each type of data derived
from each simulation software. The simulation data that is
extracted by post-processing varies depending on the software.
The extracted simulation data is called metadata. For example,
the metadata derived through 2D_Comp_P software in the
field of computational fluid dynamics are {“flowType”:
“laminar”, “aca” 1.674, “cl”: 6.38, “cdt”™: 1.000}, and the
metadata derived from VASP [13] software in the field of
material is {“reduced Formula™ “Li20”, “volume™: 57.3,
“finalEnergy™: 85.33, “coordinate™: [{“value”: [0.750, 0.500,
0.250], “label”: “Li”},{“value™: [0.250, 0.500, 0.750], “label”:
“Li”},{“value™: [0.000, 0.000 , 0.000], “label”: “O”}],
“lattice” [3.247, 3.247, 3.247]}. These metadata come in
many forms, including string, number, array, and so on.
Different representation methods must be supported because
the same data can be represented in different forms. When
representing the data of ‘coordinate’ as mentioned above
example, as can be seen in Fig 2, some users may want to
display individual data one by one, or they may want to
display the data in three-dimensional form. To represent these
various types of data, the EDISON-VIEW provides two
methods.

First, the EDISON-VIEW uses AngularJS’s notation to
easily and flexibly represent JSON-formatted metadata.
Angular]S uses {{data}} notation to represent the data. When
displaying ‘reducedFormula’ in the form of string and
‘volume’ in the form of number on the screen, users can
represent them in the form of {{dm.reducedFormula}} and
{{dm.volume}}. And if the users want to extract only specific
data from array, it is possible to represent individual data in
the same way as {{dm.lattice [0]}}, {{dm.lattice [1]}}, and
{{dm.lattice [2]}}.

[Coordinate as a table form]
Li

b <

0.750 0.500 0.250

0.250 0.500 0.750

0.000 0.000 0.000

[Coordinate as a three-dimensional form]

®1(r1] #1
a=3.247A

#=90.000°
¥=120.000°

(Figure 2) Example: Two types of representation
forms for same data

[Step 1. Drag and drop the metadata]

@ @

Components Properties

{{dm finalenergy}}

[Step 2. Actual view by preview function]

= @

-13.534775

(Figure 3) Example: Drag and drop the metadata

44

2020. 6

A Flexible and Expandable Representation Framework for Computational Science Data

[Step 1. Drag and drop the image component]
= © o B o+ 7 -]

Pag

o
o=
ja=-]
ic)
5
>

3]
(L

B>
0

]

[Step 2. Set the file path]

e hoRitT B BEyE 9 &

0

/\A

[Step 3. Actual view by preview function]

PreviewE Eol U= SYEYcA 2Y

hr)Xl?ﬂ

(Figure 4) Example: Drag and drop the component

Second, EDISON-VIEW provides a variety of web-based
representation components. Rather than simply showing string
and number, it provides representation components to
represent the data in various forms such as images, charts, and
three-dimensional ~ representations. The representation
components provided by the EDISON-VIEW and the types of
data formats that can be represented are shown in Table 1.
The user represents the simulation result by matching
extracted files to each component. The user can set the file
path as the input value of the component. For example, as

shown in Fig 4, the user use an image component and specify
the path to the file system where the image file is stored. In
addition to the above components, basic HTML building
components such as grid, panel, table, link, and label are also
provided.

The users can use components to customize the view
templates for each data type. The EDISON-VIEW provides
the preview function that previews the actual view using
temporary simulation data for the configured view template.
Fig 3 is an example of placing the metadata by draggging &
dropping and using the preview button to check the actual
view with the real data. Fig 4 shows an example where the
user drag and drop the image component, set the path to the
image file, and use the preview button to check the actual
view with the real image data. The preview allows the user
to check the view where the data is actually displayed and to
interactively modify the data. As shown in Fig 5, the created
view template can be exported and downloaded as an HTML
file, and it is also possible to import the HTML file to the
EDISON-VIEW as a view template and edit the view
template and provide an environment that can be shared and
reused.

3.2 Recycling Web-based Representation
Components

There is a limitation in representing simulation data using
simple components such as text, table, image, and chart.
Users can understand data more easily by using various
representation components. Recently, with the development of
web technology, most representation tools are being developed
using web technology and open-source tools for representing
various simulation data such as Jsmol, Paraview, and
Nglviewer have also been developed. We take advantage of
ways to reuse existing web representation tools developed by
third parties to support various types of simulation data.

The EDISON-VIEW framework allows modularization of
web-based representation tools developed by third parties,
allowing each tool to be added, removed and updated. This
provides the scalability to embrace a variety of web-based
tools. The registration of a new component consists of
defining two parts: i) define the representation component, ii)
define the input of representation component and execution

et= QIHY HEst3| (213439)

45

A Flexible and Expandable Representation Framework for Computational Science Data

View Designer

Export htm!

<IDOCTYPE hrl>
<head>
<meta charse

. P . " P 1 (P1] #1
<meta name t="width=device-width, inital-scale=1, shrink-to-fit=no"> a=4. 6594
<meta name: b=4.65%A

Fial Energy Par Atomn
<meta name="author" content="">

(Gmsnaleergypesstom)

Formation Energy

ctie>View Designer<ie> Eninaregpeon)

<t~ Bootstap core (55 > . e
-

<link href="/SDR base-porte/designer/cs/edtorcss rel="sfesheet™>

Volume
<!« Custom styles for this template --> v . fimolume)

link hef="/SDR base-portet/designer/cs/mateils” el stlesheet”>

Bandcon
{igmbandgap]}

<t Requied s > =, | oceeesior

esarpt rc="/SDR_base-portet/designerjs/jqueryminis"></script>

</head> =

<hody style=">
<div class="qridrow row’ style="">
<div class="gridrow-col colmd-3'>

v clss="panelpanel-dfaul”ste="">

<divclos="panck heading"> Materiel Detls</div>
<divdlass="panek body">

e

[Export the view template as a html file] [Import the html file as a view template]

(Figure b) Export and import functions

componentsGroup.push(‘Library/jsmol’);
Vvveb.ComponentsGroup['Library'] = componentsGroup;

Vvveb.Cofiponents.extend(”_base”, "Library/jsmol”, [1.Identify the component
name| “jsmol”,
attrlbutes: ["data-component-jsmol”

imagg: "icons/custom/icon_B5_jsmol.svg", 2. Select icon of the component
dragETmI: Timg src- . ¥ VVveD.DaseUrl ¥ icons/chart.svg">', 3. Define the default file path and the default size of component
html: [<d1v data-component-Jsmol class="jsmol" style= width:400pX, neignt:400pX; \
data-config=\"{\
1 width™ "105%",\
"height™ : "100%",\
color™ : "HFFF",\
addSelectionOptions™ : false,\
use” : "HTML5",\
j2sPath" : "/SDR_base-portlet/js/jsmol/j2s",
script” : "set antialiasDisplay; load ",\
disableJ2SLoadMonitor™ : true,\
disableInitialConsole™ : true,\
1'allow]avaScript” :_true\ 1
J\" data-file-type="{{finalPath}}" data-file-path="/POSCAR" data-file-list="{{filelist}}">\
\

]
1
1
1
1
1
1
i Additional parts for Jsmol
1
1
1
1
1

</div>’,
(Figure 6) Registration of jsmol component
code. the component.
The first part is the part that identifies a component. In The second part is the main part that writes the
this step, the name of the component and the representative executable code. In this part, as can be seen in Fig 9, we
icon are registered. The HTML attributes for inputting the file import the open-source libraries for execution, map the file

path are also defined in this part. As shown in Fig 6, 7, and path of the data to the input of the component, and write the
8, most of the information is formalized in this part, so all execution code. In this way, open-source representation tools
you need to do is type the name and path of icon to identify were imported as components of the EDISON-VIEW

46 2020. 6

A Flexible and Expandable Representation Framework for Computational Science Data

componentsGroup.push(‘Library/paraview’);
Vvveb.ComponentsGroup['Library'] = componentsGroup;

Vvveb.Components.extend("_base”, "Library/paravieu’} If Identify the component
name: | "paraview",
attrifutes: ["data-component-paraview”],
image| "icons/custom/icon_06_paraview.svg", 2. Select icon of the component
dragHtmIT <IME sre- T VVVeD.Daseurl 1 rcons/chart.svg">", 3. Define the default file path and the default size of component
html: 'fdIv data-component-paraview cClass= paraview style= WiGin:lOOOpX; Neignt:Boopx;
data-browser="Chrome|Opera|Firefox|Safari"\
data-file-type="{{finalPath}}" data-file-path="/output.vtp” data-file-list="{{filelist}}">\
\
</divs',

(Figure 7) Registration of paraview component (1/2)

componentsGroup.push(“Library/rlt2chart”);
Vvveb.ComponentsGroup[‘Library’] = componentsGroup;

Vvveb.Comfonents.extend("_base", "Library/rlt2chart”,|{1. Identify the component
name: |"rlt2chart”,
attrifutes: [“"data-component-rlt2chart”],
image| "icons/custom/icon_18_xrd.chart.svg", | 2. Select icon of the component
dragHtmlL_'3. Define the default file path and the default size of component
html: ‘kdiv data-component-rlt2chart class="rlt2chart" style="width:800@px; height:50@px; background-color: #eeeeee;" \
data-file-type="{{finalPath}}" data-file-path="/error.rlt" data-file-list="{{filelist}}">RLT File To 2D Chart</div>"',

(Figure 8) Registration of rlt2chart component

var body = Vwveb.Builder.frameBody;

1. Import the paraview libra
ipt oty dength == 0) p p ry

if (3(".para

$(body) . appe
$({body) . appy
$(body) .appd]
${body

R

fseript>T);
avaseript’s<fscripts™);

+index);

SentectorCapravien_ e 2. Map file path to the input of paraview

eight’,$(container).height(}-$(contatner).children(}.children().eq(®) heigrl(})i
asetPath,’,
type: "GET'
dataType
success
for(var 1 in data){\
var fileName = data[i].fileName;}
war filePath = oldPath + cata[i].filePatn;y,
. 2 A
I viewer. loadURL(FileName, FilePath)s\ I 3 Write the execution code

“: function() { alert('File Path Errorli!)]\

wer. loadURL (this.dataset. filePath, path);\

(Figure 9) Registration of paraview component (2/2)

framework. Currently, we have provided 7 open-source 4. Use-cases of EDISON-VIEW
representation components on the EDISON-VIEW framework.

The code in these two-steps is written based on Javascript. The EDISON-VIEW framework is applied to 13

simulation softwares in the field of computational fluid

et= QIHY HEst3| (213439) 47

A Flexible and Expandable Representation Framework for Computational Science Data

N
3 |
S | €§

(Figure 10) The collections of simulation data in
EDISON platform

Fomua

Final Enery P Atom

Nom Symbol . b

Group Hal Poit Group Apha Bea Gamma

(Figure 11) Example: Data view for VASP

dynamics, computational structural dynamics, nano-physics,
and materials. A total of about 30 simulation results were
collected on the EDISON site(www.edison.re.kr), and the
EDISON-VIEW framework was used to represent the data of
each simulation result. Fig 10 shows a list of data collections
of the simulation results. Fig 11, 12, and 13 show the result
of various data view for softwares such as VASP, Quantum
Espresso, and 2D_Incomp_P.

What’s noteworthy about data representation in VASP
software and Quantum Espresso[14] software in the field of
materials is that the generated view templates are shared and
expanded. The simulation results of VASP software are files

NNNNN

(Figure 12) Example: Data view for Quantum Espresso

such as POSCAR, WAVECAR, INCAR, and OUTCAR. The
simulation results of Quantum Espresso software are files
such as CIF, IN, and OUT. The simulation results of the two
softwares are different, but the post-processed metadata is
similar: formula, spacegroup, density, coordinate, pointgroup,
lattice and volume. In Quantum Espresso, additional values
such as energy cutoff, run type, and the number of kpoints are
extracted. Since the information we want to show in the two
software is similar, we just configure and register the view
template for VASP software, then import the VASP view
template for Quantum Espresso software and expand it by
adding additional information such as energy cutoff, run type,
and the number of kpoints as shown in Fig 14. And we
drastically reduced the cost of representation using Jsmol
component. Among the results of the VASP software, the
POSCAR file is data representing the molecular structure
information. Among the results of the Quantum Espresso
software, the cif file is also data representing the molecular
structure information. Rather than developing each
representation component to represent the files in different
formats, we import and use the Jsmol component that
embraces both formats.

48

2020. 6

A Flexible and Expandable Representation Framework for Computational Science Data

(Figure 13) Example: Data view for 2D_Incomp_P

(Table 1) Representation components

/ity TOpen-source Jsmol component
- POSCAR

[View template of VASP]

[View template of Quantum Espresso]

(Figure 14) Example: View templates for VASP
and Quantum Espresso software

Component Format Field Sglﬁ‘)?gé\s/gllé)rggd
Jsmol POSCAR, cif, xyz, mol Maﬁ;fg;&@zﬁg;‘:al' Open-source
Paraview plt FIwéi\,mSatrrnL:gtsural Open-source
pdf pdf General Open-source
epub epub General Open-source
xrd json Material Self-developed
dos json Material Self-developed
rlt2chart rlt Fluid dynamics Self-developed
html html General Self-developed
x3dom x3d Structural dynamics Open-source
p3d p3d Aluid, Structural Self-developed
ngl pdb, cif, cube Material, Chemical Open-source
csv csv General Open-source
text txt General Self-developed
onedviewer oneD General Self-developed
sc3dviewer js (dedicated to dft sc3d) Nano-physics Self-developed
atomtransistor js (dedicated to web_io_siesta) Nano-physics Self-developed

5. Conclusion

One of the most important roles of the computational
science platform is to post-process and represent the
simulation data so that the user can easily understand the data.
In this paper, we have analyzed issues such as the difficulty
in representing simulation data, the lack of extensibility of
data presentation components. We have provided a reference

model called EDISON-VIEW that can solve these issues. We
have provided flexible data representation using {{data}}
notation, and a variety of web-based representation
components. We have verified the usefulness of our
framework by applying it to create view templates for various
simulation software in the field of computational fluid
dynamics, computational structural dynamics, and materials.
We expect that the EDISON-VIEW will be used for

et= QIHY HEst3| (213439)

49

A Flexible and Expandable Representation Framework for Computational Science Data

representation of various simulation data in various fields in
the future.

References
[11 JL Yu, et al, “EDISON Platform: A Software

Infrastructure ~ for Neutral
Computational Science Simulations”, Future Information

Application-Domain

Communication Technology and Applications, pp.

283-291, 2013.

https://doi.org/10.1007/978-94-007-6516-0_31
[21J. Ma, J. Seo, J. s. Ruth-Lee and M. j. Park,
“Implementation and Application of the EDISON
platform’s integrated file management service,” Journal
of Internet Computing and Services, vol. 17, no. 6, pp.
71-80, 2016. https://doi.org/10.7472/jksii.2016.17.6.71
N. On, N. Kim, K. Ru, H. Jang and J. R. Lee, “An
Analysis of the Factors Affecting User Satisfaction in

[3

[

Computational Science and Engineering Platforms: A
Case Study of EDISON,” Journal of Internet Computing
and Services, vol. 20, no. 6, pp. 8593, 2019.
https://doi.org/10.7472/jksii.2019.20.6.85

S. Ahn, J. Lee, J. Kim and J. R. Lee, “EDISON-DATA:
A flexible and extensible platform for processing and

[4

=

analysis of computational science data,” Software:
Practice and Experience, vol. 49, pp. 1509-1530, 2019.
htps://doi.org/10.1002/spe.2732

[5] Jmol: an open-source Java viewer for chemical structures
in 3D. http://www.jmol.org/

[6] Rose, Alexander S, and Peter W Hildebrand. “NGL
Viewer: a web application for molecular visualization.”
Nucleic acids research, vol. 43, W5769, 2015.
htps://doi.org/10.1093/nar/gkv402

[71 N. Rego and D. Koes, “3Dmol.js: molecular visuali-
zation with WebGL,"”, Bioinformatics, vol. 31, pp.
1322-1324, 2015.
https://doi.org/10.1093/bioinformatics/btu829

[8] Ahrens, James, et al., “ParaView: An End-User Tool for
Large Data Visualization, Visualization Handbook”,
Elsevier, ISBN-13: 978-0123875822, 2005.
https://paraview.org

Gerhard Klimeck, Michael McLennan, Sean B. Brophy,
George B. Adams III, Mark S. Lundstrom,
“nanoHUB.org: Advancing Education and Research in

[9

—

Nanotechnology,” IEEE Computers in Engineering and
Science (CISE), Vol. 10, pp. 1723, 2008.
https://doi.org/10.1109/MCSE.2008.120.

[10] Y. Kwon, L Jeon, J. Ma, S. Lee, K. Cho and J. Seo, “A
Study on Workbench-based Dynamic Service Design and
Construction of Computational Science Engineering
Platform,” Journal of Internet Computing and Services,
Vol. 19, No. 3, pp. 57-66, 2018.
http://dx.doi.org/10.7472/jksii.2018.19.3.57

[11] McLennan, Michael, and Rick Kennell. “HUBzero: a
platform for dissemination and collaboration in
computational science and engineering”, Computing in
Science & Engineering, 2010.
https://doi.org/10.1109/MCSE.2010.41

[12] MCLENNAN, M, “The rappture toolkit”, Article
(CrossRef Link), 2004.
https://nanohub.org/infrastructure/rappture/

[13] G. Kresse and D. Joubert, Phys. Rev. 59, 1758, 1999.
vasp.at

[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M.
Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi,
S. de Gironcoli, R. Gebauer, U. Gerstmann, C.
Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N.
Marzari, F. Mauri, R. Mazzarello, S. Paolini, A.
Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G.
Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R.
M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502,
2009.
http://dx.doi.org/10.1088/0953-8984/21/39/395502

50

2020. 6

A Flexible and Expandable Representation Framework for Computational Science Data

OXN Xt 20100

2 M M(Jaesung Kim)

2013 Sofristn AFE FREEAD

20153 S=3tsly| & Aakshy st Ah
s | 201613 ~2020d 3H=343l7| &G HATY FIlFHAFHER J|&
; 2020 ~ @A SK C&C ZUE1LF dAYo]
2 ﬁ F&*‘j‘?‘i—fk : JFA G, %EH’«E

E-mail : kaka7537@gmail.com

e

oF M 2l(Sunil Ahn)

19993 A&tfistn ALbslako] 4 A

201013 Aletista oieh 7 5FE a3t
20043 ~2005'A ITA 2 WiEl 2~ PMA

20053~ @A KISTI =7} 3R a4
FAlEok . ARA2E BAAFE AFA 5

E-mail : siahn@Kkisti.re.kr

0| A &(Jeongcheol Lee)

2008 gty AFEFSIHFITAD

2014 gty tishd e F et aEEEah
2015'd~2017'd W)= UCLA gt #AFE|#8d st
20179 ~EA KISTI =7FraAFEHER Adrlsd

TRk AFAE, AL, AFEQIEHY, FAUES S
E-mail : jclee@Kkisti.re.kr

0l & =(Jong-Suk Ruth Lee)

2001'd University of Canterbury, Department of Computer Science and Software Engineering,
New Zealand(& SF2HAh)

2002 ~ @A =7 | S HATAKIST) HPA74, ALHEAFAEAE)

20053~ A A=A S AGNAHS}LUST) FHAFE ATEHY B2F)

AR} ANHUHENE, 2rhEeld, Wejold, BT, 517

E-mail : jsruthlee@Xkisti.re.kr

et= QIHY HEst3| (213439) 51

