
Journal of Internet Computing and Services(JICS) 2016. Aug.: 17(4): 01-09 1

Design and Cost Analysis for a Fault-Tolerant Distributed
Shared Memory System

☆

AL-Harbi Fahad Jazi1 Kangseok kim2
Jai-Hoon Kim3*

ABSTRACT

Algorithms implementing distributed shared memory (DSM) were developed for ensuring consistency. The performance of DSM

algorithms is dependent on system and usage parameters. However, ensuring these algorithms to tolerate faults is a problem that needs

to be researched. In this study, we proposed fault-tolerant scheme for DSM system and analyzed reliability and fault-tolerant overhead.

Using our analysis, we can choose a proper algorithm for DSM on error prone environment.

☞ keyword : Distributed Shared Memory, Fault-Tolerant, Consistency, Reliability, Data Replication

1. INTRODUCTION

Distributed shared memory (DSM) system is a memory

architecture that logically implements the shared memory

model on a physically distributed memory system. It provides

a virtual address space shared among processes on loosely

coupled processors. DSM allows high performance

multiprocessor systems that have no physically shared memory

to be programmed through the shared address space [1, 2, 3, 4].

The advantages offered by DSM include minimizing

average access time and maintaining data consistency. In earlier

research works, algorithms implementing DSM were

developed for ensuring consistency. In [1], the four basic

algorithms (central-server, the migration, the read-replication

and the full-replication algorithms) implementing DSM were

briefly described and compared for implementing DSM by

analyzing their performance. Detailed review of each of these

1 Computer Engineering, Ajou Univ., Suwon, Korea (443-749)
2,3 Cyber Security, Ajou Univ., Suwon, Korea.
* Corresponding author (jaikim@ajou.ac.kr)
[Received 3 December 2016, Reviewed 13 January 2016(R2 15
April 2016, R3 2 June 2016), Accepted 20 June 2016]
☆ Early short version of this paper[11] was presented in Fall

Conference of KSII, 2015.10.
☆ This paper is based on the MS thesis (AL-Harbi Fahad Jazi,

Cost Analysis for Fault-Tolerant Distributed Shared Memory
System, Feb. 2016, Ajou University).

☆ This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education (2015R1D1A1A01060034)

algorithms are found in [1,5].

As the number of nodes increases in DSM, the possibility

of any node failure also increases. If the failure node has a

unique copy of page (or block) in DSM, DSM will lost memory

contents and cannot provide services correctly for applications.

Thus, ensuring these algorithms to tolerate faults needs to be

researched. In this paper we proposed fault-tolerant scheme

on each of the aforementioned basic algorithms and analyzed

improvement reliability and fault-tolerant overhead. Parameters

are described in Figure 6.

Related works are described in chapter 2, our fault-tolerant

algorithms are proposed in chapter 3, we analyze fault-tolerant

overhead and reliability in chapter 4, and conclusion is in

chapter 5.

2. RELATED WORK

Reference [1] described and analyzed all four algorithms

ensuring consistency in distributed shared memory. The four

basic algorithms are central-server algorithm, migration

algorithm, read-replication algorithm and full-replication

algorithm. Some of these four basic distributed memory

algorithms can be replicated and non-replicated, on the other

hand able to be non-migration and migration as shown in

Figure 1. Reference [1] identified the parameters in data access

costs and investigated the application behaviors which affect

on the performance of the data consistency algorithm.

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2016.17.4.01

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

2 2016. 8

Also reference [1] demonstrates that DSM algorithms show

different consistency overhead for different parameters. They

explained the main role of each basic algorithm and compared

performance between algorithms. Central-server algorithm

maintains the only copy of the shared data and provides all

accesses from other nodes to shared data. Second algorithm

is migration algorithm using single-reader/single-writer

protocol [1] and the data is available by migrating to the site

where it is accessed. Third algorithm is read replication

algorithm. The algorithm maintains consistency because a read

access always returns the value of the most recent write to

the same location. Read algorithm repeats consistent because

the read access at all times returns the worth of the fresh writing

to the same location.

Fourth basic is full replication algorithm that uses a multiple

readers / multiple writers (MRMW) protocol. Even when data

blocks are written, full replication allows it to be replicated.

One disadvantage of the algorithms is that, in the same block

and at any given time, only the threads on one host able to

access data contained [1].

Many fault tolerance algorithms of DSM were proposed to

improve system availability. Reference [18] proposes efficient

replication for distributed fault tolerant memory. It is for

in-memory applications and replicates updates to a peer node

for a fault tolerance. Experimental results are described without

a cost analysis model. Replication scheme for fault tolerant

transactional systems is proposed [19]. Shared objects are

replicated across all nodes (full-replication) and replica

consistency is ensured by an optimistic atomic broadcast.

Authors implemented an optimized ordering layer and a

concurrency control mechanism which exploit multiple nodes

for replicating the transactional state. Reference [20] presents

software diversity to support security and reliability. Two

patterns describing commonly used practices of realizing

automated software diversity are described.

2.1 ALGORITHMS OF DSM

All four algorithms they described in their paper [1] ensure

consistency in distributed shared memory. However their

performance is sensitive to the data access costs and application

conducts that have considerable bearings on the performance

of the algorithms. Also they compared the relative merits of

the algorithms based on some simple analyses, and performed

to identify the relationship between access patterns of

applications and the shared memory algorithms. Using the

analysis, we can expect the performance of their algorithms.

Non-replicated Non-replicated Replicated Migrating

Central O O

Migration O O

Read-replication O O

Full-replication O O

Figure 1. Four basic distributed memory algorithms [1]

2.2 THE MAIN CONTRIBUTION OF THE

PAPER AND DETAIL EXPLANTION

In this paper our goal is to provide basic performance

analysis for DSM including fault-tolerance. Fault-tolerance

describes a computer system or component designed so that,

in the event that a component fails, a backup component or

procedure can immediately take its place with no loss of service

[1].

Fault tolerance can be provided with software, or embedded

in hardware, or provided by some combination. In the software

implementation, the operating system provides an interface that

allows a programmer to "checkpoint" critical data at

pre-determined points within a transaction. We measure the

extent of the possibility of the fault-tolerance for the basic four

algorithms for distributed shared memory, and compare the

performance of fault tolerance schemes for each basic

algorithms.

Although references [1,10] is old classic paper, it

categorized consistency algorithms of the distributed shared

memory (DSM) systems. Most recent researches related to

DSM systems [12-17] belong to one of four algorithm as shown

in Table 1. Thus our analysis for fault tolerant distributed

shared memory systems also can be applied for recent DSM

researches.

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

한국 인터넷 정보학회 (17권4호) 3

Table 1. Distributed shared memory algorithms

Recent related works remarks

Central

Software DSM with Transactional

Coherence [12]

Lease

based

protocol

Region-Based Prefetch Techniques for

Software DSM Systems[13]
prefetch

Read-replication [13] prefetch

Read-replication

Full-replication

A Distributed Real-Time Operating

System with DSM for Embedded Control

Systems [16]

MRSW

MRMW

Software based DSM model using

Shared variables between

Multiprocessors[17]

memory

controller

Samhita, software DSM on multicore

architectures [14]

multiple-

writer

protocol

Full-replication

Delay Tolerant Lazy Release

Consistency for Distributed Shared

Memory in Opportunistic Networks [15]

Delay

Tolerant

[16]
MRSW

MRMW

3. FAULT-TOLERANT ALGORITHMS

OF DSM

In this chapter, we analyze fault-tolerant overhead and

reliability of fault-tolerance DSM schemes. Fault-tolerance

describes a computer system or component designed so that,

in the event of a component fails, a backup component or

procedure can immediately take its place with no loss of

service. Fault tolerance can be provided with software,

embedded in hardware, or provided by some combination. In

the software implementation, the operating system provides an

interface that allows a programmer to "checkpoint" critical data

at pre-determined points within a transaction.

We propose and analyze the fault-tolerance scheme for the

basic algorithms of distributed shared memory by maintaining

at least two copies for each data block, and compare the

reliability and fault tolerance overhead. We assume the

parameters shown in Figure 6 based on reference [1].

Reference [10] also presented fault-tolerant distributed

shared memory algorithms. However, our algorithms and

analysis are different from [10] as shown in Table 2. Reference

[10] requires two additional parameters while our analysis does

not require additional parameters. We also analyze reliability

besides cost of fault-tolerant schemes.

Table 2. Algorithms and analysis comparisons.

Reference [10] Our analysis

Parameters Additional two parameters

are necessary.

m: The possibility of a page

transfer request being made

for a dirty block.

d: The average number of

dirty blocks a host has when

servicing a page transfer

request of a dirty page owner

by this host.

No additional

parameters is

necessary.

Reliability No analysis for reliability Reliability analysis

(probability of system

failure)

Migration

algorithms

Passive backup: Data update

is lost at primary active node

failure.

Active back up: Data

update is always

propagated to an

active backup node.

Active backup node

can be primary node or

forward a block at the

next migration.

3.1 THE CENTRAL-SERVER ALGORITHM

In this type of algorithm, the central-server maintains all

the shared data and services the read requests from clients by

returning the data items to them. The central server updates

the data on write requests by clients and returns

acknowledgements. A request is retransmitted after each

timeout period if acknowledgment fails, as depicted in Figure

2. The probability of accessing a remote data item is 1-1/S,

in which case 4 packet events (send data request, receive data

request, send response, and receive response) are necessary for

the access. Replicating the data contained by the main server

to a backup server helps this algorithm to tolerate faults. The

main server does not reply to the client until it receives the

acknowledgement from the backup. At write operation, a cost

of (1/(1+r))*2p is required in addition to the cost of the original

algorithm (send backup and receive backup on a write

operation). For an error analysis, the probability of system error

on an original algorithm is e as a copy only exists on the

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

4 2016. 8

central server, while a fault tolerant algorithm is as two copies

exist on a central server and a backup node.

Figure 2. The central-server algorithm ([1,10])

3.2 THE MIGRATION ALGORITHM

In this algorithm every data access request is forwarded

to the site where it is accessed, and data in the migration is

shipped to the location of the data access request, allowing

subsequent accesses to the data to be performed locally. Data

is migrated between hosts in blocks in order to facilitate the

management of the data. If a block is migrated from the first

host to another host, the copy at the first host is maintained,

but marked invalid the previous backup copy, as depicted in

Figure 3.

Figure 3. The migration algorithm ([1,10])

The cost of accessing a data item in that case is equal to

the cost of bringing the data block containing the data item

to the local site, which includes a total of one block transfer

(2P for send and receive the a block) and four packet events

(4p) distributed across the local, manager and remote host (send

and receive the two data request packets). For a fault tolerant

algorithm, additional 2p is required on a block access fault

to delete the previous back copy. At write operation,

(1/(1+r))*2p is also required for backup (send and receive the

backup packet). For an error analysis, a migration algorithm

is the same as a central-server algorithm.

3.3 THE READ-REPLICATION ALGORITHM

It extends the migration algorithm by replicating data blocks

and allowing multiple nodes to have read access or one node

to have read-write access. The remote access cost of read

replication is similar to the migration algorithm (2P+4p). In

the case of a write fault that occurs with a probability of

1/(r+1), a multicast invalidation packet must be handled by

all S sites except a backup (Sp/(1+r)). (See Figure 4). Fault

tolerant algorithm requires additional cost on a write even

without a write fault for backup of cost 2p. For an error

analysis, upper bound of system error of original algorithm

is one as one copy exists on a write while

multiple copies exist on a read. However, system error of a

fault tolerant algorithm is e2 as it always keeps a backup.

Figure 4. The write operation case in

read-replication [1,10]

3.4 THE FULL-REPLICATION

It is an extension of read-replication algorithm in that it

allows multiple nodes to have both read and write access to

shared data blocks. It uses a gap-free sequencer to maintain

consistency of data for multiple writers. In this kind of

algorithms, the probability of a remote access is equal to the

probability of a write access 1/(1+r) in which (S+2)*p cost

is required to send a update packet to sequencer and forward

the packet to all the other nodes.

The cost of this write is the message from the local site

to the sequencer (2 packet events), followed by a multicast

update message to all other sites (S packet events). As this

algorithm replicates on each host, the fault tolerant scheme

does not need further replication.

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

한국 인터넷 정보학회 (17권4호) 5

Figure 5. The full replication algorithm [1,10]

4. PERFORMANCE COMPARISON OF

THE ORIGINAL AND FAULT-

TOLERANT DSM ALGORITHM:

4.1 THE COST ANALYSIS

In this section, we analyze the average costs of accessing

shared data in the original and the fault tolerant DSM

algorithms by parametric analysis of cost models for

maintaining data consistency. The parameters as shown in

Figure 6 are considered for characterizing the basic costs of

accessing shared data, application behavior.

Using the basic parameters in Figure 6 and some

assumptions, the average access costs of the original algorithms

are stated in Table 3 of column two [1]. In our study, we

have stated the error formula of the original algorithms, the

cost formula and error formula of the proposed fault tolerant

algorisms in columns 4, 5 and 6 respectively.

Figure 6. Parameters that characterize the basic costs

of accessing shared data and fault tolerance

overhead [1,10]

Table 3. The cost formula and error formula of the

original and fault tolerant algorithms

Comparing the cost formulas of the original and fault

tolerant DSM algorithms, we observed that the average

accessing costs of the fault tolerant versions, central-server,

migration, and read-replication DSM algorithms are higher

than that of their corresponding original versions.

4.2 THE COST COMPARISONS

For the central algorithm, the cost of both versions of the

original algorithms and fault tolerant cost by varying S (number

of sites) are shown in Figure 7. The cost of fault tolerant scheme

is higher than that of original scheme to maintain a backup copy.

Figure 7. Cost as a function of s in central algorithm

(r=0.1 and p=1)

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

6 2016. 8

Figure 8. Probability of error in the original and F/T

central algorithm

Central-algorithms operation case is shown in Figure 8.

When fault tolerant scheme is compared with original version,

the probability of system failures decreases. Therefore system

reliability is improved, because the probability of system

failures decreases due to backup server. For an example,

system failure rate of original scheme is 0.1 when node error

rate is 0.1, while fault-tolerant scheme is 0.01 as a backup

node as well as the central node keeps the copy.

Figure 9. Cost as a function of P in migration

algorithm (r=3, p=1 and ƒ=0.02)

Average accessing cost of the fault tolerant migration

algorithm (Figure 9) is somewhat higher than original version

to maintain a backup.

Figure 10. comparison of error in the original and

F/T migration algorithm

The system failures in Figure 10 decreases almost similarly

with fault tolerant central algorithm as shown in Figure 8. Both

algorithms maintain a backup node to increase reliability.

Figure 11. Average access cost per number of hosts

in read-replication algorithm (r=3, P=4, ƒ'=0.1

and p=2)

Figure 11 demonstrates our observation graphically that the

average accessing cost of the fault tolerant read-replication

DSM algorithm is a little bit higher than that of its original

version. Fault tolerant algorithm requires an additional cost

when one node has a unique copy of data.

Also the results shown in Figure 12 illustrates the impact

of the probability of node failure on error on both versions

of the read-replication algorithm. As the probability of node

failures increases, compared to the original version, the amount

of system failure occurred in the fault tolerant read-replication

DSM algorithm is lower, thereby fault tolerant scheme

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

한국 인터넷 정보학회 (17권4호) 7

improves system reliability. The difference of reliability of two

algorithms will increases as read ratio (r) decreases, because

read-replication algorithm may have multiple copies on high

read ratio while the fault tolerant read-replication algorithm

always has at least two copies.

Figure 12. Probability of node failure on error (upper

limit) in the read-replication algorithm (r =3)

Fault tolerant probability of fault tolerant algorithm is less

than 0.01 when node error is under 0.1 by maintaining at least

two copies as seen in Figure 12.

Figure 13. Average access cost in original and F/T

Full replication algorithm (S=8, p=0.1)

In Figure 13, the costs of full replication of original version

and fault tolerant scheme are the same as both algorithms

always keep the copy on all nodes. The average access cost

decreases as the read/write ratio increases.

Figure 14. Comparison of error in the original and

F/T Full replication algorithm (S=4)

The probability of system failures in full replication

increases as the node error increasing as shown in Figure 14.

5. CONCLUSION

In this paper, we amended each of the four basic DSM

algorithms [1] to tolerate failures and analyzed their

performance. Based on the parameters that characterize the

costs of accessing shared data, results showed that we can

reduce error rate by minimal overhead of fault-tolerant scheme.

References

[1] Michael Stumn and Songnian Zhou, “Algorithms

Implementing Distributed Shared Memory”, IEEE

Computer, pp. 54-64, May 1990.

http://dx.doi.org/10.1109/2.53355

[2] John L. Hennessy and David A Patterson, Computer

Architecture: a quantitative approach, Fourth Edition,

Morgan Kaufmann Publishers, 2007.

https://app.knovel.com/web/toc.v/cid:kpCAAQAE02/vie

werType:toc/root_slug:computer-architecture-a

[3] Larry Brown and Jie Wu, “Dynamic Snooping in a

Fault_Tolerant Distributed Shared Memory”, Proc. of

International Conference on Distributed Computing

Systems, pp. 218-226, Jun 1994.

http://dx.doi.org/ 10.1109/ICDCS.1994.302415

[4] Bill Nitzberg and Virginia Lo, “Distributed Shared

Memory: A Survey of Issues and Algorithms,” IEEE

Computer, pp. 54-64, May 1991.

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

8 2016. 8

http://dx.doi.org/ 10.1109/2.84877

[5] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic,

“Distributed Shared Memory: Concepts and Systems,”

IEEE Computer pp. 63-79, June 1996.

http://dx.doi.org/10.1109/88.494605

[6] Krishna Kavi and Hyong-Shik Kim, “Shared Memory and

Distributed Shared Memory Systems: A Survey,” IEEE

System Sciences, pp. 74 – 84, 3-6 Jan 1995.

[7] Arun K. Somani and Nitin H. Vaidya, “Understanding

Fault Tolerance and Reliability,” IEEE Computer, pp.

45-50, April 1997.

http://dx.doi.org/ 10.1109/MC.1997.585153

[8] Bill Nitzberg and Virginia Lo, “Distributed Shared

Memory: A Survey of Issues and Algorithms,” IEEE

Computer, pp. 52-60, August 1991.

http://dx.doi.org/ 10.1109//2.84877

[9] Kjetil Nrvag, “An Introduction to Fault-Tolerant

Systems,” IDI Technical Report 6/99, ISSN 0802-6394,

pp.3-19, July 2000.

[10] Michael Stumn and Songnian Zhou, “Fault Tolerant

Distributed Shared Memory Algorithms,” Proceedings of

the Second IEEE Symposium on Parallel and Distributed

Processing, pp. 719-724, December 1990.

http://dx.doi.org/ 1109/SPDP.1990.143633

[11] AL-Harbi Fahad Jazi A. and Jai-Hoon Kim, “Cost

Analysis for Fault-Tolerant Distributed Shared Memory

System,” Proc. of Fall Conference of KSII, Oct. 2015.

http://www.dbpia.co.kr/Journal/ArticleDetail/NODE0655

4560

[12] Michele Di Santo et al., “Software Distributed Shared

Memory with Transactional Coherence,” Proc. of 18th

Euromicro Conference on Parallel, Distributed and

Network-based Processing, pp.175-179, 2010.

http://dx.doi.org/10.1109/PDP.2010.28

[13] Jie Cai et al., “Region-Based Prefetch Techniques for

Software Distributed Shared Memory Systems,” Proc. of

10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, pp. 113-122, 2010.

http://dx.doi.org/ 10.1109/CCGRID.2010.16

[14] Bharath Ramesh et al., “Is It Time To Rethink Distributed

Shared Memory Systems?” IEEE 17th International

Conference on Parallel and Distributed Systems, 212-219,

2011.

http://dx.doi.org/10.1109/ICPADS.2011.75

[15] Chance Eary and Mohan Kumar, “Delay Tolerant Lazy

Release Consistency for Distributed Shared Memory in

Opportunistic Networks,” Proc. of IEEE International

Symposium on a World of Wireless, Mobile and

Multimedia Networks (WoWMoM), pp.1-6, 2012.

http://dx.doi.org 10.1109/WoWMoM.2012.6263745

[16] Takahiro Chiba et al., “A Distributed Real-Time

Operating System with Distributed Shared Memory for

Embedded Control Systems,” Proc. of IEEE 11th

International Conference on Dependable, Autonomic and

Secure Computing, pp. 248-255, 2013.

http://dx.doi.org/10.1109/DASC.2013.71

[17] Hemant D. Vasava and Jagdish M. Rathod, “Software

based Distributed Shared Memory (DSM) model using

Shared variables between Multiprocessors,” Proc. of

IEEE ICCSP, pp. 1431-1435, 2015.

http://dx.doi.org/10.1109/ICCSP.2015.7322749

[18] Deepavali Bhagwat et al, “Efficient Replication for

Distributed Fault Tolerant Memory,” Proc. of ACM

SYSTOR, 2015.

http://dx.doi.org/ 10.1145/2757667.2757686

[19] Sachin Hirve et al., “SMASH: Speculative State Machine

Replication in Transactional Systems,” Proc. of ACM

Middleware, 2013.

http://dx.doi.org/ 10.1145/2541614.2541630

[20] ANDREA HÖLLER et al., “Patterns for Automated

Software Diversity to Support Security and Reliability,”

Proc. of EuroPloP, 2015.

http://dx.doi.org/ 10.1109/IEEESTD.1990.101064

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

한국 인터넷 정보학회 (17권4호) 9

◐ Authors ◑

AL-Harbi Fahad Jazi A.

2008 Technical and Vocational Training Corporation (TVTC), The Associate Degree of College of

Technology from the department of Computer Technology in the field of Technical Support, 2013 Bachelor

Degree in Computer Engineering from Korea Polytechnic University, and 2016 Master Degree in Computer

Engineering from Korea Ajou University (South Korea).

Kangseok Kim

received Ph.D. in Computer Science from Indiana University at Bloomington, IN, USA. He is currently a

research professor of the Cyber Security department at Ajou University, Suwon, Korea. His main research

interests include ubiquitous computing, cloud computing, pervasive collaborative applications with smart

phones, IoT/Smartphone grid, bioinformatics and applied security in big data

Jai-Hoon Kim

received the B.S. degree in Control and Instrumentation Engineering, Seoul National University, Seoul, South

Korea, in 1984, M.S. degree in Computer Science, Indiana University, USA, in 1993, and his Ph.D. degree

in Computer Science, Texas A&M University, USA, in 1997. He is currently a professor of the Cyber

Security department at Ajou University, South Korea. His research interests include distributed systems,

cyber-physical systems, and mobile computing.

