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Recursive Estimation of Biased Zero-Error Probability for Adaptive
Systems under Non-Gaussian Noise
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ABSTRACT

The biased zero-error probability and ifs related algorithms require heavy computational burden related with some  summation
operations af each iterafion time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are
proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased
Gaussion and impulsive noise. The proposed recursive method has significantly reduced computational burden regardiess of sample size,
contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency
the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased
Gaussion and impulsive noise.
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1. INTRODUCTION characteristics reveal severe multipath effects. Field tests for
ambient noise have established that it is predominantly
Multipath and ambient noise in communication channels ~ nom-Gaussian due to the various noise generating sources [6][7].
cause unreliable performance to many communication systems The noise composed of the Gaussian and non-Gaussian noise
[1]. In indoor radio channels and underwater acoustic channels,

the ambient noises are known to be non-Gaussian [2][3][4].

is referred to as biased-Gaussian, and impulsive interferers,
timing phase error are examples of such non-Gaussian noise

In shallow water environment the channel conditions induces
more complicated distortions and noise characteristics. Field
experiments in the work [5] on shallow water channel
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sources [8].

Among non-Gaussian noises, biased Gaussian and impulsive
noise are discussed in this paper as the ambient noise which
commonly occurs in underwater communications [9]. Recently,
a new criterion of biased zero-error probability employing a
bias term has been proposed [10]. Also its related equalizer
algorithm derived through maximization of the criterion has
been shown to be superior in the shallow water communication
environments.
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As one of the drawbacks of the biased zero-error probability
and its related algorithms, a great deal of computations hinders
the efficient implementation of the algorithm. For the purpose
of reducing the computational complexity for -efficient
applications, in this paper, a recursive approach to the biased
zero-error probability and its related algorithms is proposed and
compared in the same simulation environment of shallow water
communication channels with ambient noise of biased Gaussian

and impulsive noise.

2. BIASED ZERO - ERROR PROBABILITY

The difference between the desired symbol ¢:and an output
sample Vi of the system involved is usually defined as an error
sample ¢, that is, & =9 —Y: of the system at the sample time
i. The distribution information of the error samples ¢ can be
found through the error probability density function fx(€). The
well known kemel density estimate approximates the true
density for continuous random variables with a set of given
data samples [11].

When the Gaussian kernel G,() with a kernel size oand ~
error samples  {€_yy1>€_niarees €5eer €y are used, the
probability density function for error samples can be
expressed as

fi(@) ﬁizggf(e—e[)

1 1 —(e=e)’
N o e W

Then f;(e+7) with bias term? can be a more appropriate
expression for error samples shifted by some sort of DC-bias

noise.

1S _
fole+)= N[:§§0(<e+r) e) o

Defining  Cipiased =€ =7, we have

1 k
f (e+T):7 Go'(e_e[ iase )
’ N, e i ©)

On the other hand, the criterion of zero-error probability

. 18,
7:0=372.6:@) which has well been established for supervised

learning is maximized to move the error samples €; close to
zero, compensating intersymbol interference (ISI) and noise
effect [12]. Similar to this approach, a new criterion of the

-0 = /¢(?) has been introduced

biased zero-error PDF /(e +7)
in the work [10] as

=L 6 (-
fE (T) - N ,-:,;VHGO.( ei,biaxed) (4)

When the biased zero-error probability is maximized the
error samples are forced to be congregated at around zero
compensating the bias 7 which is estimated in adaptive
algorithms appropriately designed for the criterion (4).

3. RECURSIVE ESTIMATION OF BIASED
ZERO-ERROR PROBABILITY

The biased zero-error PDF at time k-1 is

1 k-1
f E (T),H - ﬁ i;NGa (_ei,binsed ) ©)

This can be rewritten as

fE (D) = [1/( i G, (_ei,biased )

i=k—N+1

- Go’ (_ek,biaxed ) + Go' (_eka,biaxed )) (6)

fE (T)k = fE (T)k—l

1 1
+ N Go’ (_ek,biased ) - ﬁ Go' (_eka,biased ) (7)

This indicates that the biased zero-error PDF can be
estimated recursively.

For the maximization of the criterion J:(?); we apply the
steepest descent method using the gradient of (7) with respect
to weight of the adaptive system in use. For this purpose,
firstly the adaptive system employed needs to be specified.

Assuming the same tapped delay line (TDL) structure is used
as in [10], that is, the system weight vector is

—_— T . . _—
W =Wy Wiis Wagsees Wi 1 and input is Xy =% X000

a
X 14:b] where bis a constant, the system output becomes
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Vi piased = W/ X, =y + Wy b ®)

where  Ck.biased = dk = Vi piased =e—w, b and

T
Vi :[Wo,kﬂWl,kﬂwz,kr"’wl—l,k] [xk,xk—l,"'ﬂxk—(L—l)]

This structure ensures that the bias 7 can be controlled by e
and b.

Based on this adaptive system, the steepest descent method
leads to the following weight adjustment equation.

o (7
Wi, =W e o

When the biased zero-error PDF (4) which is based on
block-processing estimation is employed, the gradient for (9)
can be expressed as

F;:(7), [BR
= €, bi sed — 0 _ei iase .Xi
aW O’zN iz};ﬂubmw ( Jbias d) (10)

On the other hand, the proposed recursive estimation of the
biased zero-error PDF (7) leads to the recursive gradient (11).

Y () _ (D

oW oW

+ 1 [ 9G, (=€ piasea ) _ 9G (=€ piasea)
N oW oW

]

U (Dy 1
- % - O_2N ek,biaxed ' Go‘ (ek,biaxed) . Xk
* O'ziN N biased * G" (ek—N,biased) : Xk_N (11)

It is noticeable that the weight update equation using the
block-processing gradient (10) which is referred to as MBZEP
(Maximization of Biased Zero-Error Probability) algorithm in
[10] requires a summation operation at each iteration time.
However, the proposed gradient (11) does not demand any
summation operations.

4. RESULTS AND DISCUSSION

The aim of this section is to show that the proposed
algorithm ((9) and (11)) with a computationally efficient
estimation of biased zero-error probability and its gradient
yields the same MSE learning performance as the
block-processing based MBZEP algorithm ((9) and (10)) which
has much higher computational complexity under the simulation
environment used in the study [10]. That is, the multipath
channel #H(2)is from the shallow-water communication
experiment carried out in the work [10].

MBZEP
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Fig. 1. MSE performance under impulsive and

time-varying DC bias noise in underwater
communication environment.

H(z)=0.798z"" +0.543z7° +0.259z* 12)

The non-Gaussian noise comprises impulsive and slowly
time-varying DC-bias. The impulsive noise model and DC-bias
noise are the same ones as used in [10]. Likewise, the equalizer
parameters for this simulation are L =11, b=2, the sample
size N=4, #=0.01 and the kernel size c=1.0.

The immunity against the non-Gaussian noise has been
proven to be superior in the work [10] removing slowly
changing DC noise completely as well as showing stable
convergence without weight perturbation under severe
impulsive noise. Figure 1 shows that these properties under the
environment are completely preserved in the proposed method
as well.

Besides the slowly time-varying DC-bias noise, in this
section, an abrupt DC noise added in middle of the convergence
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process to the impulsive noise is studied. It is added at & = 6000
and kept on as depicted in Fig. 2. Figure 3 shows that after
initial convergence the MSE leaming curve has a spiky sudden
rise at sample time 6000 caused by the static DC-bias noise
added from the sample time 6000 and on. Both algorithms
successfully cancel the static DC noise at a very rapid rate
reaching the steady state MSE within 500 samples. For a more

n { \‘
‘

T T T T 1
0 2000 4000 6000 8000 10000 12000

o o
1

volt
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number of samples

Fig. 2. Impulsive noise with 1 volt DC bias abruptly
added from the sample time 6000.
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Fig. 3. MSE performance under impulsive plus DC
bias noise abruptly added from the sample
time 6000.

performance comparison, the LMS (least mean algorithm)
in [1] is also compared.

From the observations of Fig.1 and 3, we can be convinced
that the original MBZEP algorithm and the proposed algorithm
both have the ability to cope with any types of DC-bias noise

as well as impulsive noise, where more importantly, the
proposed one has no computational burden with respect to
sample size N contrast to the original MBZEP algorithm.
As the main figure of merit for this study, the extent of
computational complexity in multiplication is investigated for
the proposed recursive method compared with the original
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Fig. 4. Number of multiplications with respect to
sample size N.

MBZEP algorithm. For the sake of convenience of
comparison, the Gaussian kernel G-(¢) and 1/0*N which are
commonly included in both methods are treated as constants.
The block-processing method (10) demands 3~ multiplications
at each iteration time while the proposed method (11) requires
5 multiplications. It is particularly important that the
computational complexity of the proposed one is constant
without any relationship with the sample size N since a large
sample size is preferable in order to guarantee a desired level
of accuracy [13]. Therefore, the property of the computational
complexity being independent of the sample size N ensures the
proposed method to achieve more accurate PDF estimation by
increasing N without any limit of computational cost. Figure
4 for comparisons of computational burden shows apparently
that the proposed method is more appropriate to practical
implementations.

5. CONCLUSION

The biased zero-error probability and its related algorithms
have been developed for multipath channels with non-Gaussian
noise. Despite its superior performance in ambient noise of
biased Gaussian and impulsive noise, the algorithm requires

4
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heavy computational burden so that efficient implementation
is hindered. For the purpose of reducing the computational
complexity, in this paper, a recursive approach to the biased
zero-error probability and its related algorithms is proposed. The
proposed method has no computational burden with respect to
sample size contrast to the original MBZEP algorithm with
computational complexity proportional to sample size. From
this computational efficiency and the simulation results showing
equivalent ability to cope with DC-bias and impulsive noise,
we conclude that the proposed recursive method can be a good
candidate for practical signal processing applications in the
environments of impulsive and biased non-Gaussian noise.
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