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비-가우시안 잡음하의 적응 시스템을 위한 바이어스된
영-오차확률의 반복적 추정법

Recursive Estimation of Biased Zero-Error Probability for Adaptive 
Systems under Non-Gaussian Noise
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요    약

바이어스된 영-오차확률 (biased zero-error probability)과 이에 관련된 알고리듬은 매 반복시간마다 합산과정을 지니고 있어 많은 

계산상의 부담을 요구한다. 이 논문에서는 바이어스된 영-오차확률에 반복적 접근법을 적용한 알고리듬을 제안하였고 천해역 통신채

널과 충격성 잡음 및 바이어스된 가우시안 잡음이 혼재한 실험 환경에서 성능을 비교하였다. 샘플 사이즈에 비례하는 계산 복잡도를 
지닌 기존 알고리듬과 달리 제안한 반복적 방식은 샘플 사이즈와 무관하여 계산량의 부담을 크게 줄였다. 이러한 계산효율 특성을 

지닌 제안한 알고리듬은 블록 처리방식의 기존 알고리듬과 비교하여 다중경로 페이딩, 바이어스된 잡음 및 충격성 잡음에 대한 강인

성에서 동일한 성능을 나타냈다.  

☞ 주제어 : 반복적 확률, 바이어스된 영-오차, 바이어스된 가우시안, 충격성, 수중통신

ABSTRACT

The biased zero-error probability and its related algorithms require heavy computational burden related with some summation 

operations at each iteration time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are 

proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased 

Gaussian and impulsive noise. The proposed recursive method has significantly reduced computational burden regardless of sample size, 

contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency 

the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased 

Gaussian and impulsive noise. 

☞ keyword : recursive probability, biased zero-error, biased Gaussian, impulsive, underwater communication 

1. INTRODUCTION

Multipath and ambient noise in communication channels 

cause unreliable performance to many communication systems 

[1]. In indoor radio channels and underwater acoustic channels, 

the ambient noises are known to be non-Gaussian [2][3][4]. 

In shallow water environment the channel conditions induces 

more complicated distortions and noise characteristics. Field 

experiments in the work [5] on shallow water channel 

1 Division of Electronics, Information & Communication  Engineering, 
Kangwon National Unversity, Samcheok, Gangwon-Do, 245-711, 
Republic of Korea

* Corresponding author (namyong@kangwon.ac.kr) 
[Received 5 August 2015, Reviewed 14 October 2015, Accepted 22 
December 2015]

characteristics reveal severe multipath effects. Field tests for 

ambient noise have established that it is predominantly 

non-Gaussian due to the various noise generating sources [6][7]. 

The noise composed of the Gaussian and non-Gaussian noise 

is referred to as biased-Gaussian, and impulsive interferers, 

timing phase error are examples of such non-Gaussian noise 

sources [8].

Among non-Gaussian noises, biased Gaussian and impulsive 

noise are discussed in this paper as the ambient noise which 

commonly occurs in underwater communications [9]. Recently, 

a new criterion of biased zero-error probability employing a 

bias term has been proposed [10]. Also its related equalizer 

algorithm derived through maximization of the criterion has 

been shown to be superior in the shallow water communication 

environments. 
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As one of the drawbacks of the biased zero-error probability 

and its related algorithms, a great deal of computations hinders 

the efficient implementation of the algorithm. For the purpose 

of reducing the computational complexity for efficient 

applications, in this paper, a recursive approach to the biased 

zero-error probability and its related algorithms is proposed and 

compared in the same simulation environment of shallow water 

communication channels with ambient noise of biased Gaussian 

and impulsive noise. 

2.BIASED ZERO-ERROR PROBABILITY

The difference between the desired symbol id and an output 

sample iy of the system involved is usually defined as an error 

sample ie , that is, iii yde −=  of the system at the sample time 

i . The distribution information of the error samples ie can be 

found through the error probability density function )(efE . The 

well known kernel density estimate approximates the true 

density for continuous random variables with a set of given 

data samples [11]. 

When the Gaussian kernel )(⋅σG  with a kernel size σ and N

error samples },...,,...,,{ 21 kiNkNk eeee +−+− are used, the 

probability density function for error samples can be 

expressed as 
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Then )( τ+efE  with bias termτ  can be a more appropriate 

expression for error samples shifted by some sort of DC-bias 

noise. 
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On the other hand, the criterion of zero-error probability 

∑
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)(1)0( σ  which has well been established for supervised 

learning is maximized to move the error samples ie  close to 

zero, compensating intersymbol interference (ISI) and noise 

effect [12]. Similar to this approach, a new criterion of the 

biased zero-error PDF )()(
0

ττ EeE fef =+
=  has been introduced 

in the work [10] as 
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When the biased zero-error probability is maximized the 

error samples are forced to be congregated at around zero 

compensating the bias τ which is estimated in adaptive 

algorithms appropriately designed for the criterion (4).    

3. RECURSIVE ESTIMATION OF BIASED 

ZERO-ERROR PROBABILITY 

The biased zero-error PDF at time k-1 is 
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This can be rewritten as 
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This indicates that the biased zero-error PDF can be 

estimated recursively.  

For the maximization of the criterion kEf )(τ   we apply the 

steepest descent method using the gradient of (7) with respect 

to weight of the adaptive system in use.  For this purpose, 

firstly the adaptive system employed needs to be specified.  

Assuming the same tapped delay line (TDL) structure is used 

as in [10], that is, the system weight vector is  
T

kLkkkk wwww ],...,,,[ ,,2,1,0=W  and input is kkk xx ...,[ ,1, −=X  

T
Lk bx ],1+− where b is a constant, the system output becomes 
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bwyy kLkk
T
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where biasedkkbiasedk yde ,, −=  bwe kLk ⋅−= ,  and  

]...,[],...,,,[ )1(,1,,1,2,1,0 −−−−= Lkkk
T

kLkkkk xxxwwwwy

This structure ensures that the bias τ can be controlled by kLw ,

and b . 

Based on this adaptive system, the steepest descent method 

leads to the following weight adjustment equation. 
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When the biased zero-error PDF (4) which is based on 

block-processing estimation is employed, the gradient for (9) 

can be expressed as 
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On the other hand, the proposed recursive estimation of the 

biased zero-error PDF (7) leads to the recursive gradient (11).  
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It is noticeable that the weight update equation using the 

block-processing gradient (10) which is referred to as MBZEP 

(Maximization of Biased Zero-Error Probability) algorithm in 

[10] requires a summation operation at each iteration time. 

However, the proposed gradient (11) does not demand any 

summation operations. 

         

4. RESULTS AND DISCUSSION

The aim of this section is to show that the proposed 

algorithm ((9) and (11)) with a computationally efficient 

estimation of biased zero-error probability and its gradient 

yields the same MSE learning performance as the 

block-processing based MBZEP algorithm ((9) and (10)) which 

has much higher computational complexity under the simulation 

environment used in the study [10]. That is, the multipath 

channel )(zH is from the shallow-water communication 

experiment carried out in the work [10].   
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Fig. 1. MSE performance under impulsive and 

time-varying DC bias noise in underwater 

communication environment. 

864 259.0543.0798.0)( −−− ++= zzzzH (12)

The non-Gaussian noise comprises impulsive and slowly 

time-varying DC-bias. The impulsive noise model and DC-bias 

noise are the same ones as used in [10]. Likewise, the equalizer 

parameters for this simulation are 11=L , 2=b , the sample 

size 4=N , 01.0=μ , and the kernel size 0.1=σ . 

The immunity against the non-Gaussian noise has been 

proven to be superior in the work [10] removing slowly 

changing DC noise completely as well as showing stable 

convergence without weight perturbation under severe 

impulsive noise. Figure 1 shows that these properties under the 

environment are completely preserved in the proposed method 

as well. 

Besides the slowly time-varying DC-bias noise, in this 

section, an abrupt DC noise added in middle of the convergence 
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process to the impulsive noise is studied. It is added at 6000=k

and kept on as depicted in Fig. 2. Figure 3 shows that after 

initial convergence the MSE learning curve has a spiky sudden 

rise at sample time 6000 caused by the static DC-bias noise 

added from the sample time 6000 and on. Both algorithms 

successfully cancel the static DC noise at a very rapid rate 

reaching the steady state MSE within 500 samples. For a more 

clear 
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Fig. 2. Impulsive noise with 1 volt DC bias abruptly 

added from the sample time 6000. 
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Fig. 3. MSE performance under impulsive plus DC 

bias noise abruptly added from the sample 

time 6000. 

performance comparison, the LMS (least mean algorithm) 

in [1] is also compared.     

From the observations of Fig.1 and 3, we can be convinced 

that the original MBZEP algorithm and the proposed algorithm 

both have the ability to cope with any types of DC-bias noise 

as well as impulsive noise, where more importantly, the 

proposed one has no computational burden with respect to 

sample size N contrast to the original MBZEP algorithm.   

As the main figure of merit for this study, the extent of 

computational complexity in multiplication is investigated for 

the proposed recursive method compared with the original
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Fig. 4. Number of multiplications with respect to 

sample size N.

MBZEP algorithm. For the sake of convenience of 

comparison, the Gaussian kernel )( ieGσ  and N21 σ  which are 

commonly included in both methods are treated as constants.  

The block-processing method (10) demands N3  multiplications 

at each iteration time while the proposed method (11) requires 

5 multiplications. It is particularly important that the 

computational complexity of the proposed one is constant 

without any relationship with the sample sizeN  since a large 

sample size is preferable in order to guarantee a desired level 

of accuracy [13]. Therefore, the property of the computational 

complexity being independent of the sample sizeN ensures the 

proposed method to achieve more accurate PDF estimation by 

increasing N without any limit of computational cost. Figure 

4 for comparisons of computational burden shows apparently 

that the proposed method is more appropriate to practical 

implementations. 

5. CONCLUSION

The biased zero-error probability and its related algorithms 

have been developed for multipath channels with non-Gaussian 

noise. Despite its superior performance in ambient noise of 

biased Gaussian and impulsive noise, the algorithm requires 
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heavy computational burden so that efficient implementation 

is hindered. For the purpose of reducing the computational 

complexity, in this paper, a recursive approach to the biased 

zero-error probability and its related algorithms is proposed. The 

proposed method has no computational burden with respect to 

sample size contrast to the original MBZEP algorithm with 

computational complexity proportional to sample size. From 

this computational efficiency and the simulation results showing 

equivalent ability to cope with DC-bias and impulsive noise, 

we conclude that the proposed recursive method can be a good 

candidate for practical signal processing applications in the 

environments of impulsive and biased non-Gaussian noise.
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