Digital Library
Search: "[ keyword: Detection ]" (109)
-
Ji-hye Kim, Ok-ran Jeong, Vol. 21, No. 1, pp. 79-85, Feb. 2020
10.7472/jksii.2020.21.1.79
Keywords: Spam Filtering, spam detection, New Words Detection, Knowledge Graph, ConceptNet -
Jihun Chae, Hyoung-yong Ko, Byoung-gil Lee, Namgi Kim, Vol. 20, No. 4, pp. 39-46, Aug. 2019
10.7472/jksii.2019.20.4.39
Keywords: sink holes, pipe, GPR, Image recognition, underground detection, CNN, deep-learning -
Sumin Hwang, Hyung-Woo Lee, Vol. 20, No. 2, pp. 61-68, Apr. 2019
10.7472/jksii.2019.20.2.61
Keywords: Blockchain, Hyperledger Fabric, Android Mobile App, Malicious Counterfeit App Detection. -
Sungho Kim, Suchul Lee, Vol. 20, No. 2, pp. 9-19, Apr. 2019
10.7472/jksii.2019.20.2.9
Keywords: Malware, Detection rule, SNORT, LDA, network threat -
Doung Uk Kim, Shinhoo Kang, Vol. 26, No. 5, pp. 17-27, Oct. 2025
10.7472/jksii.2025.26.5.17
Keywords: Elderly Fall Detection, CCTV Video Analysis, Object Detection and Tracking, YOLOv8 -
Young-nam Song, Seung-gyu Kim, Tae-Ho Im, Vol. 26, No. 5, pp. 29-38, Oct. 2025
10.7472/jksii.2025.26.5.29
Keywords: Life-jacket Detection, YOLO11n, Dual Detection Method, Marine Safety, small-object detection -
Hyunjun Park, Insup Lee, Vol. 26, No. 4, pp. 1-8, Aug. 2025
10.7472/jksii.2025.26.4.1
Keywords: ddos detection, Deep Learning, Transfer Learning, traffic volume-based labeling -
Taesu Kim, Dongkyoo Shin, Dongil Shin, Vol. 26, No. 3, pp. 1-7, Jun. 2025
10.7472/jksii.2025.26.3.1
Keywords: Network intrusion detection, data augmentation -
89. DiabetesNet: Lightweight and Efficient AI-based Solution for Real-World Diabetic Foot ClassificationJeong-Eun Moon, Yong-Jin Cho, Se-Yeol Rhyou, Sang-Hoon Hong, Vol. 26, No. 2, pp. 167-178, Apr. 2025
10.7472/jksii.2025.26.2.167
Keywords: Diabetic Foot Classification, AI-Powered Healthcare, Object Detection, Convolutional Neural Network (CNN), explainable artificial intelligence (XAI) -
Sang-Jae Yeo, Zoo-Ho Son, Jee-Yeon Jeon, Hyung-Taek Kim, Vol. 26, No. 2, pp. 43-50, Apr. 2025
10.7472/jksii.2025.26.2.43
Keywords: Anomaly Detection, Machine Learning, Current signal, Induction motor, Statistical distance




