
Journal of Korean Socieity for Internet Information 2013. Feb: 14(1): 53-62 53

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화☆

Ubiquitous Workspace Synchronization in a Cloud-based Framework

랭크 엘리호데1 양 호1 이 재 완1*

Frank I. Elijorde Hyunho Yang Jaewan Lee

요 약

재 서로 다른 지역에서 여러 의 컴퓨터 장비를 가지고 일을 근하고 작업을 하는 것은 흔히 볼 수 있는 상이다. 이러한

환경에서 일의 일치성과 이동성을 이루기 해서는 워크스페이스 동기화를 한 효율 인 방법이 사용되어야 한다. 그러나 일

동기화 만으로는 시간과 장소에 계없이 작업을 재개하는 작업환경의 이동성을 보장하지는 못한다. 본 논문에서는 클라우드를 기반
으로 한 사용자 워크스페이스의 근 방안을 제공하는 유비쿼터스 동기화 기법을 제안한다. 세션 모니터링과 일 시스템 리 방법

을 결합하여 효율 인 동기화 방법을 제시하 다. 실험결과 고객요구에 한 평균/최 지연시간 뿐만 아니라 I/O연산의 수, CPU이

용율 에서 우리의 연구가 Cloud Master-replica 동기화 기법보다 성능이 우수함을 보 다.

☞ 주제어 : 클라우드 스토리지, 일 동기화 서비스, 유비쿼터스 워크스페이스

ABSTRACT

It is common among users to have multiple computing devices as well as to access their files or do work at different locations.

To achieve file consistency as well as mobility in this scenario, an efficient approach for workspace synchronization should be used.

However, file synchronization alone cannot guarantee the mobility of work environment which allows activities to be resumed at any

place and time. This paper proposes a ubiquitous synchronization approach which provides cloud-based access to a user’s workspace.

Efficient synchronization is achieved by combining session monitoring with file system management. Experimental results show that the

proposed mechanism outperforms Cloud Master-replica Synchronization in terms of number of I/O operations, CPU utilization, as well

as the average and maximum latencies in responding to client requests.

☞ keyword : Cloud Storage, File Synchronization Service, Ubiquitous Workspace

1. Introduction

Cloud storage has gained popularity among casual and

corporate users due to its convenience, cost-effectiveness,

and low maintenance overhead. Currently, Amazon, Google,

IBM, and Microsoft, to name a few, are the major

companies pioneering in cloud computing infrastructure.

Aimed for the reliable upkeep of data, cloud storage is a

1 Dept. of Information and Telecommunication Engineering, Kunsan
National University, Gunsan Jeollabuk-do, 573-701, Korea

* Corresponding author (jwlee@kunsan.ac.kr)
[Received 29 August 2012, Reviewed 19 September 2012, Accepted
22 October 2012]
☆ This is the extended version of the paper published in 2012

KSII Summer Workshop. This research is partially supported
by the Institute of Information and Telecommunication
Technology of KNU.

☆ 본 논문은 2012년도 한국인터넷정보학회 하계학술발표 회
우수논문의 확장버 임.

platform for online storage where data is stored in virtual

servers at remote data centers run by third-party service

providers instead of on-site dedicated servers. Today,

popular applications utilizing cloud storage are various file

hosting services such as Dropbox [1], iCloud [2], Skydrive

[3], and Wuala [4]. Users of these applications can store and

share files with others over the Internet, as well as maintain

contents through file synchronization. Identical copies of the

same files are thus held at two or more places, including the

service provider’s server and the user’s devices.

Another familiar method for enabling file and workplace

portability is by using desktop virtualization which allows

access to an entire information system environment from a

remote client device. For example, a device called "secure

portable office" stores all the software required which enable

tamper proof access to files, data and applications from any

online computer and recreates a user's desktop [5].

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2013.14.53

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

54 2013. 2

In its most basic form, file synchronization can simply be

thought of as file copying. But in reality, synchronization can

be more complex since it has to handle several people who

need access to multiple files at varying locations. This

process of file synchronization is required in a number of

scenarios that include synchronization of user files, as well

remote back up of massive data sets. A number of works

suggest methods for effective content delivery [6] as well as

optimization techniques for efficient communication [7]. With

considerable amount of data to be managed and processed,

and expectedly, diverse working environments, an efficient

file and workspace synchronization mechanism is needed.

In this paper, we propose a ubiquitous synchronization

approach which provides cloud-based access to a user’s

workspace. By context, we define “workspace” as the current

desktop session of the user comprised of file access (open,

update, create, delete) and web activities (URLs). The

synchronization of the user’s workspace is maintained by

utilizing multi-agents for efficient session monitoring and file

system management. Also, to eliminate the need for frequent

(if not constant) connectivity to the server, we utilize a

download-once-upload-once approach which significantly

reduces bandwidth requirements. Moreover, the server

workload is also reduced by delegating file system monitoring

tasks to the client itself; thus minimizing bottlenecks.

2. Related Work

In this section, we discuss previous works and existing

technologies that provided the motivation for this research.

We divide this section into Cloud Data Storage and File

Synchronization Service.

2.1 Cloud Data Storage

By making data available in the cloud, it can be more

easily and ubiquitously accessed, often at much lower cost,

increasing its value by enabling opportunities for enhanced

collaboration, integration, and analysis on a shared common

platform [8]. Cloud storage [9] is a model of networked

online storage where data is stored in virtualized pools of

storage which are generally hosted by third parties.

Physically, the resource may span across multiple servers.

Cloud storage services may be accessed through a web

service application programming interface, or through a

web-based user interface.

One of the first milestones for cloud computing was the

arrival of Salesforce.com [10] in 1999, which pioneered the

concept of delivering enterprise applications via a simple

website. FilesAnywhere [11] also helped pioneer cloud based

storage services that also enable users to securely share files

online. Both of these companies continue to offer those

services today. As examples of object storage, cloud storage

services like Amazon S3 [12], cloud storage products like

EMC Atmos [13], and distributed storage research projects

like OceanStore [14] are well-known.

In the academe, cloud data storage is also an emerging

field in which a number of studies have been done. A study

in [15] describes a solution that allows users to securely store

data on a public cloud. In [16], they proposed HadoopRsync,

which is for the synchronization from the user’s devices to

the cloud as well as synchronization the other way around.

Another work in [17] focus on the requirement of

data-intensive applications. They propose a layered view of

the cloud storage architecture, which is composed of user

application layer, application hosting platform layer, storage

management layer and storage resources layer. In a recent

study in [18], they emphasized an approach to storing

personal data that would provide device transparency in

which the users should see the same view of their data

regardless of which device they are working on.

2.2 File Synchronization Service

File Synchronization Service ensures that computer files

in two or more locations are updated and synchronized using

certain rules. In the past, one well-known protocol is the

algorithm used in the widely used Rsync tool for

synchronization of file systems across machines [19]. The

same algorithm has also been implemented in several other

tools and applications. As pointed out in [20], currently there

are two main approaches to the distributed synchronization,

the user-controlled peer-to-peer synchronization and the cloud

master-replica synchronization approach.

In the first approach, users install synchronization

software such as [21] in all computers containing the data

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

한국 인터넷 정보학회 (14권1호) 55

files and explicitly initiate a peer-to-peer synchronization

whenever they need to synchronize their files. This is a

“manual” process requiring the user to provide the network

addresses of all device(s), as well as the synchronization

parameters, such as direction of the synchronization, and

which files to keep or overwrite. Managing synchronization

for three or more file system hierarchies can be a

cumbersome and error-prone process, especially for the

average user without technical skills. Cox and Josephson in

[22] discuss manual synchronization as a method which is

highly error prone, in which users must keep track of files

to determine which are up to date and which are not and

manually copy most updated files on all machines.

The second approach, cloud master-replica synchronization

solves some of the issues by employing cloud services to

automate synchronization and deal with multiple devices. In

the approach implemented by many cloud-based

synchronization and backup services mentioned in Section 1,

a master replica containing data to be synchronized is

maintained as a master copy in the cloud, to which all the

user’s file systems synchronize and transfer updates. As our

main point of comparison, we further discuss the said

approach in the next sub-section.

2.3 Cloud Master-replica Synchronization

The Cloud Master-replica Synchronization is an approach

used by commercial service providers as well as the study

conducted in [23]. This technique with one-way

synchronization to the master replica in the cloud, aims to

increase availability and reliability in case of device

failure(s), and to automate synchronization management. For

the purpose of comparison, we site some disadvantages of

the said synchronization approach. First, the server is

required to process and monitor massive number of files

especially in the instance of multiple concurrent access from

clients. This would mean serious workload as well as

significant bandwidth requirements on the server side.

Second, concurrent update/access by multiple devices from a

single user is unrealistic and impractical. It is virtually

impossible to have accessed and updated files in multiple

devices simultaneously, making the source of file updates not

a single replica, but several replicas. In this case,

communication may become complex, because it involves

transferring files between all devices. This requires constant

and high speed network connection, and increases protocol

complexity to handle ad hoc communication between devices.

3. Ubiquitous Workspace

Synchronization Using the

Cloud

To fully describe our system, let’s consider a scenario

where a user has to maintain his workspace on multiple

machines. On his office desktop, he could be working on

multiple files or documents as well as having a hectic web

browsing activity. It is likely that he needs to continue his

work in another place (home, café, etc.) and this would

require saving a copy of the files as well as taking a

snapshot of his most recent web activity which will be stored

remotely for later access. This is the problem that we would

like to address. One of the challenges in maintaining

consistent user data is synchronizing replicated data among

a number computing devices. This approach is useful not

only for backup purposes, but also for remote access, where

a user needs to replicate part of a data set, modify it and

then synchronize with the main data set when network

connection is available. Figure 1 shows the overall view of

the system.

Synchronization Service

Client

Session 1 (Office) Session 2 (Home) Session 3 (Cafe)

(Figure 1) Cloud-based Ubiquitous Workspace

Synchronization.

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

56 2013. 2

3.1 Session Initialization

In the Session Control layer, the User Authentication

Agent (UAA) provides the initial interface between the user

and the system. It authenticates the user credential provided

by the remote client. If the authentication is failed, the UAA

will send a notification to the Session Monitoring Agent

(SMA) which causes the connection to be cancelled.

Otherwise, SMA will establish a session request to the

synchronization service. Upon successful login, a user can

access all the sessions he has made which can be

downloaded into his current workplace and make necessary

modifications locally. The session image is used to securely

store user data over the Synchronization Service. However,

all operations carried out on this object are handled on the

client; this prevents unauthorized access or modifications.

Once the session has been downloaded, an instance of a

workplace is established on the user’s machine. The

interaction of the agents within the session control layer is

shown in Figure 2.

Client Application

Session
Monitoring

Agent

User
Authentication

Agent

Web Monitoring
Agent

ServerS
es

si
on

 Im
a

ge

File System
Monitoring

Agent

Session Control

(Figure 2) The components of the client application.

3.2 Capturing the Session Image

Once the session has been loaded on the client’s machine,

an image of it will be maintained locally. By default, the

entire session will be loaded as a duplicate of the workspace

from the previous location. This means that the files the user

is working on will be automatically opened with the

corresponding application; moreover, web sessions will also

be restored and loaded using the machine’s default browser.

As shown in Figure 2, once the current workspace has

been established, the Web Monitoring Agent (WMA) and the

File System Monitoring Agent (FSMA) will come into

action. The WMA keeps track of the user’s web browsing

activity by keeping a record of the websites accessed in the

current session. Each time a new URL is loaded, it is

immediately reflected to the session image. Through this the

user doesn’t need to keep bookmarks of the sites visited, it

is all left to the WMA. On the other hand, the FSMA

performs the more important task of keeping track of the file

system. A session image can be thought of as a directory that

contains all the files and URLs within the current workspace.

Any event that pertains to file access should be captured by

the FSMA in order to maintain file consistency within the

current workspace.

Within the workspace file system, possible operations

include open, update, create, or delete. Invoking these

operations causes the FSMA to update the session image;

this ensures that the current workspace is synchronized with

the user’s session. The status of the files within the

workspace is determined by the FSMA through the following

algorithm:

fStat {
//Let Scur and Sprev be the current
 and previous sessions
//Let f be a file
//Let fcur and fprev be the current and previous
 versions of file f

For each file fprev in Sprev and fcur in Scur,
 such that fprev = fcur do
if (fprev.name = fcur.name) and

(fprev.hash != fcur.hash) then
//f is Modified
//replace f with fcur

else if (fprev.name != fcur.name) and
(fprev.hash = fcur.hash) then
//f is Renamed

else if fcur is not in Sprev then
f is new file

else if fprev is not in Scur then
f is Deleted

else
//f is Unmodified

end if
End for
}

This is then used to upload only the modified parts of a

session:

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

한국 인터넷 정보학회 (14권1호) 57

U
pdate

v1

ServerWorkspace A Workspace B

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Vcur

upload

v1

download

v2

U
pdate

Vcur

upload

v2

Vcur

do nothing

upload

U
pdate

v3

Vcur

upload

v2

download

(Figure 3) A sample scenario showing the

synchronization of updates: whether

to copy a file version to the server

or to do nothing.

UpdateSession(S)
{
//Let S be the active session
For each file f in session S do

if (fStat(f)=modified) then
Upload f

elseif (fStat(f)=new) then
Upload f
else
//Skip f

 End for
For each url u in Scur,
if u is not in Sprev then
u is a new url
append u to S
else if u is not in Scur then
u is Deleted
else
u is Unmodified
end if
End for
}

3.3 Update Synchronization

The sample scenario in Figure 3 starts with a file upload

of v1 from Workspace A to the server at time T1. The newly

uploaded file will become the current version called Vcur

after the update at time T2. A session in Workspace B

downloads Vcur and modifies v1 into v2 at time T4 followed

by a successful update process to the server at time T5. At

time T6, Workspace B attempts to upload v2 into the server.

It was determined by the server that the current version is v2,

therefore the update request will do nothing. At T8,

Workspace A downloads file v2 and modified it into v3 at

time T9; followed by a successful upload at time T10 upon

validation by the server.

3.4 Conflict Resolution

Our approach to dealing with conflicts is to make sure

that the files contained in a session are always the latest

version. This is complemented by ensuring that a file

uploaded by the user is always up-to-date; that is, it was

derived from the most recent version. We illustrate our

conflict resolution approach in Figure 4.

A sample scenario shown in the figure demonstrates a

conflict resolution process. Starting at time T1, the first

version of a file is created at Workspace A then uploaded to

the server at time T2 denoted as Vcur. At time T3,

Workspace B downloads the current file version and modifies

it at time T4 resulting to file v2. Right after the file v1 was

modified to become v2, it is uploaded to the server at time

T5 as the current version. Looking back at Workspace A, it

modified its previous copy of v1 to a different version (we

call v3) at time T6 and attempts to upload to it the server.

As can be seen in time T7, such action will result to a

conflict since the file modification history of v3 tells the

server that it was derived from v1which is older as compared

to the version it currently holds; therefore the update request

will be rejected. At time T9, Workspace A instead downloads

the current version from the server and modifies it to become

v3 at time T10. As it attempts to update the current version

at the server, the file v3 will be validated by the server that

it was indeed derived from the most current version that it

has; therefore the update request is permitted.

3.5 Session Synchronization

On the server side, there is also a session control layer

which serves as the counterpart for the client’s session

control mechanism. It serves as the frontmost component for

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

58 2013. 2

U
pdate

v1

ServerWorkspace A Workspace B

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

Vcur

upload

v1

download

v2

U
pdate

Vcur

upload

X

C
onflict!

U
pdate

v3

Vcur

upload

v3

upload

v2

download
Vcur

(Figure 4) Conflict resolution based on a file’s

modification history.

Session Control

User
Authentication

Agent

Session
Monitoring

Agent

Session
Synchronization

Agent

File
Management

Agent

Storage Virtualization

File Metadata

RD WR RN DL

File
Access
Control

Storage System

User & Session
Data

Synchronization Service

Client

(Figure 5) The components of the synchronization

service.

(Figure 6) Files and URLs contained in a session

session synchronization. It provides the interface for the

synchronization service which is also comprised of various

components. User and session data are kept in the database

which in turn provides the necessary parameters for the

Session Synchronization Agent (SSA) in performing its

function. The SSA is responsible for retrieving the status of

the current user from the Session Control Layer. If an active

session of the current user is found, it does some

initialization according to the user profile and provides it

with access to the File Management Agent (FMA). The SSA

handles the session requests, and coordinates the required

files and directories to the FMA. For each request, a copy

of the session image is pulled out from the storage and

served to the user. The FMA has direct access to the virtual

storage of the synchronization service as it is responsible for

the creation, update, removal, or swapping of the stored

sessions as directed by the user. Figure 5 shows the

interaction of the server-side components.

4. Implementation and Evaluation

4.1 Implementation

To realize the proposed solution, it is implemented to

work as a cloud-based client-server system. A client

application is required to connect to the server in order to

access and download previous sessions as well as upload

new ones. The server application is responsible for

authenticating and storing user profiles as well as

maintaining the session synchronization.

As shown in Figure 6, selecting a session will cause the

contained files and URLs to be displayed. The user can

choose to either download the entire session, or just a part

of it. After a session has been downloaded, this will form the

current workspace of the user. Downloading a session will

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

한국 인터넷 정보학회 (14권1호) 59

(Figure 7) The I/O operations per second. (Figure 8) CPU utilization.

initiate the files and URLs to be loaded into the workspace

and automatically opened by their respective applications.

All open files will be loaded on a temporary directory

which will be monitored for any file access-related events.

Every time a file is modified, created, renamed, or deleted,

this should be reflected in the session image.

While a session is active, the u

ser can update it by appending additional files and URLs.

Any changes made to the currently loaded session image will

not be reflected to the server unless an Update Session

command is issued by the user. This means that all session

activities occur locally within user’s workspace on the client

machine. As soon as the session image is uploaded to the

server, the user can now choose to end the session. Once the

user decides to end his session, all temporary files and

directories created during the session will be deleted thus

leaving no footprint of the previous workspace.

4.2 Evaluation

We evaluate the performance of our work, the Cloud-

based Ubiquitous Workspace Synchronization (CUWS), by

comparing it against the Cloud Master-replica

Synchronization (CMRS). The experiment was conducted for

a period of one hour with sessions containing files of random

sizes. As for the metrics, their respective average and

maximum latency in carrying out session read and write were

measured. Aside from that, the I/O workloads and CPU

utilization were also evaluated. We used these metrics to

further emphasize that delegating all the synchronization

processes to the server would significantly degrade its

performance. Moreover, through a download-once-

upload-once approach, less workload is delegated to the

server; thereby significantly enhancing the performance of

the system and improving the quality of service.

In Figure 7, the I/O operation is shown in terms of

Average I/O, Read I/O, and Write I/O per second,

respectively. While in Figure 8, the CPU utilization for

CMRS is more than thrice as that of CUWS. As shown in

the figures, simultaneous file system access considerably

contributes to the overall I/O workload of the server as it

handles numerous read and writes requests to the stored files.

This supports our method of delegating file system

management to a local replica of the session within the

user’s workspace.

In Figure 9, we show the average latencies of the two

approaches in terms of Average I/O response time, Read

response time, and Write response time. The graph shows the

average time between initiation and completion of an I/O

operation, averaged over the length of the test, in

milliseconds. Also indicated is the average time between

initiation and completion of a read and write operation. The

server for CMRS greatly suffered as the number of

concurrent sessions increased. As shown, there really is a

huge difference between the latencies of the two methods.

This can be attributed to the amount of workload that has to

be handled by the server in processing I/O requests.

In the duration of our test, there exists a peak level for

the parameters that we measured. As shown in Figure 10, the

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

60 2013. 2

(Figure 9) Average latencies in ms of I/O, Read,

and Write response.
(Figure 10) Latencies in ms for Average

Maximum I/O, Read Maximum, and

Write Maximum.

maximum latency is the point in which the server took the

longest time to respond to a client request (Session

Upload/Download, I/O, Read, and Write). Similarly, the

maximum latencies in terms of Read response time, Write

response time, and their average are shown. At this point, the

performance difference between the two approaches has

greatly increased.

The results above show that delegating all the necessary

synchronization processes to the server would significantly

degrade its performance. The performance drawback involves

I/O cost and latency concerns that arise in the Cloud

Master-Replica Synchronization approach. This is the

important issue addressed by our work.

5. Conclusions and Future Work

Being able to access your personal data in a ubiquitous

manner is just one of the many benefits of cloud storage.

However, it is worth pointing out that cloud storage systems

are not specifically designed to serve as high-performance

file systems but rather scalable and easy to manage storage

infrastructures. This is shown in the results of our study in

which a cloud-based master replica approach suffered in the

event of heavy workload caused by concurrent client

connections and excessive I/O requests. Our work

outperformed CMRS in terms of optimal number of I/O

operations, CPU utilization, as well as the average and

maximum latencies in responding to client read and write

requests.

Synchronization of the user’s workspace was made

possible by efficient session monitoring and file system

management. By delegating file system monitoring tasks to

the client itself, server workload is greatly reduced. As a

result, bottlenecks are minimized and the need for almost

constant connectivity to the server is discarded. In our future

work, we intend to incorporate compression and encryption

algorithms to improve the reliability and security of our

system.

References

[1] “Dropbox Website”, http://www.dropbox.com/

[2] “iCloud Website”, http://www.icloud.com/

[3] “Skydrive Website”, http://www.skydrive.com/

[4] “Wuala Website”, http://www.wuala.com/

[5] “Secure Portable Office”, http://www.

commsbusiness.co.uk/RSS_News_Articles.cfm?NewsI

D=5575

[6] J. W. Byers, J. Considine, M. Mitzenmacher, and S.

Rost: Informed Content Delivery Across Adaptive

Overlay Networks, IEEE/ACM Transactions on

Networking, vol.12, no.5 (2004) pp. 767- 780

[7] U. Irmak, S. Mihaylov, and T. Suel: Improved

Single-Round Protocols For Remote Rile

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

한국 인터넷 정보학회 (14권1호) 61

Synchronization, Proc. of INFOCOM 24th Annual

Joint Conference of the IEEE Computer and

Communications Societies (2005) pp. 1665- 1676

[8] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu: Cloud

Storage as the Infrastructure of Cloud Computing,

Intelligent Computing and Cognitive Informatics

(ICICCI) International Conference (2010) pp.380-383

[9] “Cloud Storage”, http://en.wikipedia.org/wiki/Cloud_

storage

[10] “Salesforce Website” http://www.salesforce.com/

[11] FilesAnywhere Website”,

http://www.filesanywhere.com/

[12] “Amazon S3 Website”, http://aws.amazon.com/s3/

[13] “EMC Atmos”,

http://www.emc.com/storage/atmos/atmos.htm

[14] “OceanStore”, http://oceanstore.cs.berkeley.sedu/

[15] J. Zhang, X. Yu, Y. Li, and L. Lin: "HadoopRsync,"

Cloud and Service Computing (CSC) International

Conference (2011) pp.166-173

[16] R. Koletka and A. Hutchison: An Architecture For

Secure Searchable Cloud Storage, Information

Security South Africa (ISSA) (2011) pp.1-7

[17] Y. Huo, H. Wang, L. Hu, and H. Yang: A Cloud

Storage Architecture Model for Data-Intensive

Applications, Proc. of International Conference on

Computer and Management (CAMAN) (2011) pp.1-4

[18] J. Strauss, J. M. Paluska, C. Lesniewski-Laas, B.

Ford, R. Morris, and F. Kaashoek: Eyo:

Device-Transparent Personal Storage, Proc. of the

USENIX Annual Technical Conference (2011)

p.35-35

[19] A. Tridgell and P. Mackerras: The Rsync Algorithm,

Technical Report TR-CS-96-05, Australian National

University (1996)

[20] S. Uppoor, M.D. Flouris, and A. Bilas: Cloud-based

Synchronization of Distributed File System

Hierarchies, Proc. of IEEE International Conference

on Cluster Computing (2010) pp.1-4

[21] B.C. Pierce and J. Vouillon: What's in Unison? A

Formal Specification and Reference Implementation

of a File Synchronizer, Tech. rep. MS-CIS-03-36,

University of Pennsylvania (2004)

[22] R. Cox and W. Josephson: File Synchronization

With Vector Time Pairs, Technical Report

MIT-CSAIL-TR-2005-014 (2005)

[23] B. Xianqiang, X. Nong, S. Weisong, L. Fang, M.

Huajian and Z. Hang: SyncViews: Toward

Consistent User Views in Cloud-Based File

Synchronization Services, Chinagrid Sixth Annual

Conference (2011) pp.89-96

클라우드 기반 임워크에서 유비쿼터스 워크스페이스 동기화

62 2013. 2

◐ 자 소 개 ◑

랭크 엘리호데 (Frank I. Elijorde)
2003년 Western Visayas College of Science and Technology, Philippines, BS in Information Technology

2007년 Western Visayas College of Science and Technology, Philippines, MS in Computer Science

2011년～ 재 Kunsan National University, South Korea, Graduate Student in Ph. D. Course

심분야 : Distributed systems, cloud computing, data mining, ubiquitous sensor networks, RFID

E-mail : frank@kunsan.ac.kr

양 호 (Hyunho Yang)
1986년 운 학교 자공학과 졸업(학사)

1990년 운 학교 학원 자공학과 졸업(석사)

2003년 주과학기술원 정보통신공학과 졸업(박사)

1989년～1990년 삼성SDS 근무

1991년～1997년 포스데이타(주) 근무

1997년～2005년 순천청암 학 근무

2005년～ 재 군산 학교 정보통신공학과 교수

심분야 : 무선데이터통신, RFID/USN etc.

E-mail : hhyang@kunsan..ac.kr

이 재 완 (Jaewan Lee)
1984년 앙 학교 이학사- 자계산학

1987년 앙 학교 이학석사- 자계산학

1992년 앙 학교 공학박사- 자계산학

1996년 3월~1998년 1월 한국학술진흥재단 문 원

1992년~ 재 군산 학교 교수

심분야 : 분산 시스템, 운 체제, 유비쿼터스 시스템, 클라우드 컴퓨 등

E-mail: jwlee@kunsan.ac.kr

