
한국 인터넷 정보학회 (10권3호) 141

표 경로에 기반한 XML 문서의 계층 군집화 기법
☆

A Hierarchical Clustering Technique of XML Documents based on
Representative Path

김 우 생*

Woosaeng Kim

요 약

XML은 데이터 교환과 정보 리에 차 요해지고 있다. 근래에 XML 문서들에 한 근, 질의, 장을 한 효율 인 기
법들을 개발하기 해 많은 노력들이 이루어지고 있다. 이 논문에서 우리는 XML 문서들을 효율 으로 군집화하는 새로운 방법
을 제안한다. XML 문서의 특징을 해 XML 문서의 구조와 내용을 표할 수 있는 새로운 표 경로, 즉 가상 경로가 제안된다.

XML 문서들을 군집화하기 해 잘 알려진 계층 군집화 기법들을 표 경로들에 용하기 한 방법도 제안된다. 실험을 통해
XML 문서의 특징으로 가상 경로를 사용했을 때 실제 인 군집들이 촘촘한 형상으로 잘 형성됨을 알 수 있다.

Abstract

XML is increasingly important in data exchange and information management. A large amount of efforts have been spent

in developing efficient techniques for accessing, querying, and storing XML documents. In this paper, we propose a new method

to cluster XML documents efficiently. A new prepresentative path called a virtul path which can represent both the structure

and the contents of a XML document is proposed for the feature of a XML document. A method to apply the well known

hierarchical clustering techniques to the representative paths to cluster XML documents is also proposed. The experiment shows

that the true clusters are formed in a compact shape when a virtual path is used for the feature of a XML document.

☞ keyword : XML, XML clustering(XML 군집화)

1. Introduction

The growth of the Internet has greatly simplified

access to existing information sources and spurred the

creation of new sources. As the Internet continues to

grow and evolve, more and more information is being

placed in structurally rich documents such as XML.

With the large number of documents on the Web,

there is an increasing need to be able to automatically

process those structurally rich documents for

information retrieval and search applications.

* 정 회 원 : 운 학교 컴퓨터공학부 교수

kwsrain@kw.ac.kr

[2008/10/09 투고 – 2008/10/13 심사 – 2008/12/24 심사완료]

☆ 본 논문은 2009년도 운 학교 교내 학술연구비 지원에 의

해 연구되었음.

XML consists of elements and each element is a

pair of matching start- and end-tags and all the text

that appears between them. Since users can define

tags freely, tags represent not only data itself but

also data meaning. The elements of XML are

organized in a nested structure such that XML can

be modeled as an ordered labeled tree[1]. Each node

in this tree corresponds to a tag in the document and

is labeled with the tag's name. Each edge in this tree

represents inclusion of the tag corresponding to the

child node under the tag corresponding to the parent

node in the XML.

The general purpose of data clustering is to derive

some relevant information from the various data for

further data processing. The clustered data may show

표 경로에 기반한 XML 문서의 계층 군집화 기법

142 2009. 6

some tendency or regularity in the data and may

even show some relevant knowledge worth noting.

The clustering of XML documents is to group similar

documents to facilitate searching because similar

documents can be searched and processed within a

specific category. The appropriate clustering of XML

documents is also effective for systematic document

management and the efficient storage of XML

documents, and even for system protection purpose

because unusual document can be discovered easily.

This paper proposes a new method to cluster

XML documents efficiently. We propose a new

representative path called a virtual path for the

feature of a XML document. The virtual path which

composes of the important node for each level of a

XML tree can represent both the structure and the

contents of a XML document. We then propose a

method to apply the well known hierarchical

clustering techniques to the representative paths to

cluster XML documents. We will also explain how

the hierarchical clustering process is terminated when

the clustering that best fits the data has been

achieved according to some criterion.

The rest of the paper is organized as follows. In

section 2, we propose a method to extract

representative paths such as a virtual path and a

longest frequent path from a XML document. In

section 3, we propose a method to apply the well

known hierarchical clustering algorithm when

representative paths are used as the feature of a

XML document. In section 4, we test and verify the

effectiveness of our algorithm with several examples.

Finally, we make a conclusion in section 5.

2. Related Work

The need for organizing and clustering XML data

has become challenging, due to the increase of

heterogeneity of XML sources. Recently, several

clustering techniques which consider the structure

and/or the contents of XML documents are studied.

Ref. [2] applies a K-means clustering technique to

XML documents represented in a vector-space

model. In this representation, each document is

represented by an N-dimensional vector, with N

being the number of document features such as text

features, tag features, and a combination of both in

the collection. They only consider the contents of

XML. In [3,4], a new bitmap indexing based

technique to cluster XML documents is described. A

BitCube is presented in as a 3-dimensional bitmap

index of triplets (document, XML-element path,

word). BitCube indexes can be manipulated to

partition documents into clusters by exploiting

bit-wise distance and popularity measures. However,

this method needs manual operations to create a

bitmap index. Ref. [5] devises features for XML

data, focusing on content information extracted from

textual elements and structure information derived

from tag paths. They introduce the notion of tree

tuple in the definition of an XML representation

model that allows for mapping XML document trees

into transactional data, i.e., variable length sequences

of objects with categorical attributes. A partitional

clustering approach has been developed and applied

to the XML transactional domain. On the other hand,

ref. [6] transforms the structure of the XML

document into a discrete function. The discrete

function, then, is transformed into frequency domain

by FFT. The result of FFT is a pair of complex

numbers consisting of x and y values and considered

to be a pair of n-dimensional vectors. The pairs of

n-dimensional vectors are compared using a

weighted Euclidean distance metric in an incremental

and unsupervised fashion. This approach considers

표 경로에 기반한 XML 문서의 계층 군집화 기법

한국 인터넷 정보학회 (10권3호) 143

solely the structure of elements. Ref. [7] transforms

XML trees into vectors in a high dimensional

Euclidean space based on the occurrences of the

features in the documents. Next, they apply principal

component analysis(PCA) to the matrix to reduce its

dimensionality. Finally they use a K-means

algorithm to cluster the vectors residing in the

reduced dimensional space and place them in

appropriate categories. However, their method only

works for documents with the same DTD. Ref. [8]

proposes a method to extract representative paths by

considering both the sequence and occurrence

frequency of elements of XML tree by sequential

pattern mining technique. Then the paths composed

of items are clustered by the notion of large items,

i.e., items contained in some minimum fraction of

transactions in a cluster to measure the similarity of

a cluster of transactions[9].

3. Feature Extraction in XML

A feature extraction algorithm can be considered

as a function, g, which maps a pattern P into a set

of features 1 2{ , ,..., }nF f f f= , viz. 1 2: { , ,..., }ng P f f f→ .

We present methods to extract a feature which can

represent a XML document. XML is composed of

sequential and nested structure of elements contrast

to the nonsequential structure of a traditional

document. An element is composed of a pair of

matching start and end tags, and all the text that

appears between them. Since XML's tags express the

meaning of a document, the sequential and nested

structure of the important XML's tags can be used

as a XML's feature. Fig. 1(a) is the part of the club

XML document to explain the process of fining the

structure which represents a given XML document.

<club>

 <clubname>….</clubname>

 <member>

 <name>

 <last name>…</last name>

 <first name>…</first name>

 </name>

 <phone>…..</phone>

 <title> … </title>

 </member>

</club>

(a)

(b)

(Fig. 1) Club XML document and

its corresponding tree

One way to get the structure that represents the

document of Fig. 1(a) is to extract an appropriate

representative path from the corresponding tree of

Fig. 1(b). Table 1 shows all the paths composed of

consecutive nodes from the root to leaf and those

nodes' names are renamed to distinguish them easily.

표 경로에 기반한 XML 문서의 계층 군집화 기법

144 2009. 6

(Table 1) Paths of the XML tree

Sequence_ID Original path Renamed path

1 Club/club name a/b1

2
Club/member/name/last
name

a/b2/c1/c4

3
Club/member/name/first
name

a/b2/c1/c5

4 Club/member/phone a/b2/c2

5 Club/member/title a/b2/c3

The longest frequent paths are used as the features

of XML documents to cluster them based on the

large items in the following way[8]. When the

consecutive nodes from the root are only considered,

the path 'a' is occurred 5 times, the path 'a/b2' is

occurred 4 times, the path 'a/b2/c1' is occurred 2

times, and the remaining paths are occurred only

once. As a path includes more lower nodes its

occurrence frequency becomes large and its

importance becomes high. Also, the long path may

represent the contents of a document better than the

short path does. Therefore, the longest path which

satisfies the minimum support of a sequential pattern

mining technique can be used as a representative

path. When the minimum support is 2, the longest

frequent path of Fig. 1(b) is 'a/b2/c1', i.e.,

'club/member/name' that can represent the document

of Fig. 1(a). However, the computation overhead is

very large to extract a longest frequent path by a

sequential pattern mining technique such as a

PrefixSpan[10].

We, therefore, propose a new method to find the

representative path of a XML document more

efficiently. In each level of a XML tree, the node

which represents the level is extracted to form a

virtual path. Since the node which has many children

can be considered as an important node, the node

which has the most children among the nodes in

each level is extracted as the representative node for

that level except the last level. If more than one

node satisfy the condition in the same level, then an

arbitrary node is selected. For example, the <club>

node is selected because there is only one node in

the first level of Fig. 1(b). The <member> node is

selected because it has the most children in the

second level. The <name> node is selected in the

same way in the third level. The last level is ignored

because it only consists of leaf nodes which are not

important in a general sense. As a result

'club/member/name' is selected as the virtual path

for representing the document of Fig. 1(a). On the

assumption that each node knows about its children

information, the pseudo code to extract a virtual path

is illustrated in Fig. 2. In this method, the

representative node in each level is selected as a

node is deleted one by one from the queue after all

the nodes of the tree are inserted into queue once.

Therefore, the time complexity of the algorithm is

O(2n) when the total number of nodes of a tree is n.

Procedure find_virtual_path (XML_tree: tree)

begin

 insert(rootnode, Que);

 nextLevel_nodeNum := 1;

 while Que <> empty

 begin

 curtLevel_ nodeNum := nextLevel_

nodeNum;

 nextLevel_ nodeNum := 0;

 Max := 0;

 while curtLevel_ nodeNum > 0

 begin

 delete(node, Que);

 curtLevel_ nodeNum --;

 // if a node has children then insert

children nodes to queue

 if node has children

표 경로에 기반한 XML 문서의 계층 군집화 기법

한국 인터넷 정보학회 (10권3호) 145

 for i : = 1 to childNum {

 insert(child, Que)

 nextLevel_ nodeNum ++;}

 // a representative node for each level

is extracted

 if childNum > Max {

 Max := childNum;

 rep_node := node; }

 end

 print(rep_node);

 end

end

(Fig. 2) Pseudo code to extract a virtual path

4. XML Clustering

We propose a method to apply the well known

hierarchical clustering algorithm when a

representative path is used as the feature of a XML

document. The hierarchical clustering algorithms

produce a hierarchy of nested clustering. A

clustering 1ℜ containing k clusters is said to be

nested in the clustering 2ℜ , which contains r(<k)

clusters, if each cluster in 1ℜ is proper subset of 2ℜ .

Hierarchical clustering algorithms are classified into

two groups -agglomerative and divisive- in

accordance with the building up direction of the

clusters. The pseudo code of general agglomerative

clustering algorithm is described in Fig. 3 when the

total number of patterns is n.

① Begin with n clusters, each consisting of one

pattern.

② Repeat step ③ a total of n-1 times.

③ Find the most similar clusters Ci and Cj and

merge Ci and Cj into one cluster.

 If there is a tie, merge the first pair found.

(Fig. 3) Agglomerative clustering algorithm

One of the important issues for clustering process

is how the similarity measure between patterns is

quantified. We consider not only the node's name

but also the node's position in the path to measure

the similarity between XML documents. The

similarity between the names of the two compared

nodes can be obtained by the set of synonyms or

thesauruses. For example, suppose that the names of

the compared nodes are different such that an 'actor'

in one node and a 'star' in the other node. Then, the

system assigns a value from 0 to 1 to the name

weight according to the conformance level of the

two names after the synonyms of 'star' are extracted

from a synonym database such as the WordNet[11].

However, even if the names of the compared nodes

are the same, the weight can be different according

to the positions of the nodes in the paths. This is

because as the path to the node becomes short, more

weight is assigned when the similar XML documents

are searched[12]. Let the level weight of a node ix ,

(1 i n≤ ≤) in a representative path is ix
Lev , then

the level weights satisfy the following conditions.

1 2
...

nx x xLev Lev Lev≥ ≥ ≥ and 1
1

i

n

x
i
Lev

=

=∑ (1)

Let the representative paths X and Y of the two

XML documents are 1 2/ / / nx x xK and

1 2/ / / my y yK , respectively, and the name weight

of the two nodes ix and jy is (,)i jName x y .

Then, the similarity between two XML documents

(,)Sim X Y (0 (,) 1Sim X Y≤ ≤) is defined in

the following way.

표 경로에 기반한 XML 문서의 계층 군집화 기법

146 2009. 6

1 1
(,) (,) min(,)

i j

n m

i i x y
i j

Sim X Y Name x y Lev Lev
= =

= ×∑∑ (2)

The reason of choosing the minimum value of the

two level weights is that we want to reduce the

influence of a weight as the difference between the

levels of the compared nodes is large. Different

agglomerative clustering algorithms are obtained by

using different methods to determine the similarity of

clusters. The single-linkage algorithm is obtained by

defining the distance between two clusters to be the

smallest distance between two patterns such that one

pattern is in each cluster. Therefore, if Ci and Cj are

clusters, the distance between them is defined as:

,
(,) max (,)

i j
SL i j X C Y C
d C C Sim X Y

∈ ∈
=

(3)

On the other hand, the complete-linkage algorithm

is obtained by defining the distance between two

clusters to be the largest distance between a pattern

in one cluster and a pattern in the other cluster.

Therefore, if Ci and Cj are clusters, the distance

between them is defined as:

,
(,) min (,)

i j
CL i j X C Y C
d C C Sim X Y

∈ ∈
=

(4)

5. Clustering Experiments

We use the data provided by the XML data bank

of the University of Wisconsin to measure the

effectiveness of our algorithm[13]. This data bank

provides several DTDs such as bibliography, club,

company profiles, stock quotes, department, personal

information, movies, and actors. Even though many

XML documents can be generated from each DTD,

the number of the representative paths available from

those documents is limited. For example, the virtual

paths available from the documents based on the

club's DTD in Fig. 4 are 'club/member/name' and

'club/member/address'. On the other hand, the

longest frequent paths available from the documents

based on the club's DTD are 'club/member',

'club/member/name' and 'club/member/address'

when the minimum support is 2.

Club

<?xml encoding="ISO-8859-1"?>

 <!ELEMENT club (clubname, member+)>

 <!ELEMENT clubname (#PCDATA)>

 <!ELEMENT member (name, phone, email,

address?, title?)>

 <!ELEMENT name (lastname?, firstname)>

 <!ELEMENT address (city, state, zip)>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT lastname (#PCDATA)>

 <!ELEMENT firstname (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

 <!ELEMENT email (#PCDATA)>

 <!ELEMENT city (#PCDATA)>

 <!ELEMENT state (#PCDATA)>

 <!ELEMENT zip (#PCDATA)>

(Fig. 4) Club's DTD

We experiment with the representative paths

available from XML documents based on three

DTDs of actor, club, and movies to see a

hierarchical clustering process. When a path's length

is 2, 3, or 4, the assigned level weight is (0.6, 0.4),

(0.5, 0.3, 0.2), or (0.4, 0.3, 0.2, 0.1), respectively.

The name weight between two compared nodes is

set to 1 for convenience as long as the names of the

two nodes are similar. The dendrogram of a virtual

path by a single-linkage algorithm is shown in Fig.

5(a). The virtual paths available from the documents

based on actor, club, and movies DTDs are renamed

as (a1, a2), (c1, c2), and (m1, m2, m3, m4),

표 경로에 기반한 XML 문서의 계층 군집화 기법

한국 인터넷 정보학회 (10권3호) 147

respectively. The result of the clustering is {a1, a2},

{c1, c2}, and {m1, m2, m3, m4} when the three

clusters are formed. We see that the clustering result

is correct although there are some paths which are

similar to each other but belong to different DTDs

such as a2 = actor/filmography/movie and m1 =

movie/cast/actor. The reason of the correct clustering

regardless of those paths is that we consider how

much the compared nodes' levels are close to each

other as well as how much those names are similar

to each other. The difference between the value of

SLd when three clusters are formed and that of SLd

when two clusters are formed is small, i.e., 0.1. The

reason is that some paths which are similar to each

other but belong to different DTDs such as a2 =

actor/filmography/movie and m1 = movie/cast/actor

are to be merged in the next step. This shows that

a single-linkage algorithm has a tendency to favor

elongated cluster. On the other hand, the dendrogram

of a longest frequent path by a single-linkage

algorithm is shown in Fig. 5(b). The longest frequent

paths available from the documents based on actor,

club, and movies DTDs are renamed as (a1, a2), (c1,

c2, c3), and (m1, m2, m3, m4, m5), respectively. As

we can see in Fig. 5, the clustering result of a

longest path is almost the same as that of a virtual

path except that the number of representative paths

generated by a longest path is a little bit larger than

that of a virtual path.

(a)

(b)

(Fig. 5) Dendrogram by a single-linkage

algorithm

Fig. 6(a) is the dendrogram of a virtual path when

a complete-linkage algorithm is used with the same

data. When three clusters are formed, the clustering

result is correct as {a1, a2}, {c1, c2}, and {m1, m2,

m3, m4} although the order of the clusters'

formation is different from that of the single-linkage

algorithm. However, the difference between the

value of CLd when the three clusters are formed and

that of CLd when the two clusters are formed is

large, i.e., 0.5. The reason is that there exists at least

one path in each cluster which is not similar to

others in other clusters. In this case, it is not

desirable to merge those three clusters into two

clusters. On the other hand, the dendrogram of a

longest frequent path by a single-linkage algorithm is

shown in Fig. 6(b). As we can see in Fig. 6, the

clustering result of a longest path is almost the same

as that of a virtual path.

(a)

표 경로에 기반한 XML 문서의 계층 군집화 기법

148 2009. 6

(b)

(Fig. 6) Dendrogram by a complete

-linkage algorithm

The hierarchical clustering algorithm does not

necessarily produce the whole hierarchy of n

clustering, but it can terminate when the clustering

that best fits the data has been achieved according to

some criterion[14]. For this, we define a function

h(C), (0 () 1)h C≤ ≤ that measures the dissimilarity

between the documents of the same cluster C.

,
() min (,)

X Y C
h C Sim X Y

∈
=

(5)

Let θ (0 1)θ≤ ≤ be an appropriate terminal

threshold for the adopted h(C). Then, the algorithm

terminates at the tℜ clustering if

1 : ()j t jC h C θ+∃ ∈ℜ < (6)

In words, tℜ is the final clustering if there exists

a cluster C in 1t+ℜ with dissimilarity between its

patterns (h(C)) is less than θ . The dendrogram of

Fig. 6 suggests that an appropriate value for θ is

0.5 when a complete-linkage algorithm is used.

Fig. 7 shows the number of the clusters formed

according to the value of CLd when 80 XML

documents based on eight DTDs of the XML data

bank are clustered. The number of the clusters

formed by a virtual path(VP) is less than that of the

clusters formed by a longest frequent path(LFP).

This is because the number of the virtual paths

available from a DTD is usually less than that of the

longest frequent paths. Eight clusters are formed

when the value of CLd is 0.5 and all the clusters are

merged into one when the value of CLd becomes 0.

Therefore, we know that the proper clusters are

formed when a terminal threshold θ is set to 0.5 in

case of our experimental data. It shows that true

clusters are formed in a compact shape when a

virtual path is used for the feature of a XML

document and an appropriate terminal threshold can

be obtained when a complete-linkage algorithm is

used for XML clustering.

(Fig. 7) Number of the clusters

6. Conclusion

As the Internet continues to grow and evolve,

more and more information is being placed in

structurally rich documents such as XML. With the

large number of documents on the Web, there is an

increasing need to be able to automatically process

those structurally rich documents for information

retrieval and search applications. The clustering of

XML documents is to group similar documents to

facilitate searching because similar documents can be

searched and processed within a specific category.

표 경로에 기반한 XML 문서의 계층 군집화 기법

한국 인터넷 정보학회 (10권3호) 149

The appropriate clustering of XML documents is

also effective for systematic document management

and the efficient storage of XML documents, and

even for system protection purpose because unusual

document can be discovered easily.

This paper proposes a new method to cluster

XML documents efficiently. We propose a new

representative path called a virtual path which

represents both the structure and the contents of a

XML document for the feature of a XML document.

We then propose a method to apply the well known

hierarchical clustering algorithm to those

representative paths to cluster XML documents. The

experiment shows that an appropriate terminal

threshold can be obtained to terminate the clustering

process automatically and the true clusters are

formed in a compact shape when a complete-linkage

algorithm is used. We also show that it is much

more efficient when a virtual path is used as a

representative path becuase the time complexity to

extract a virtual path is only O(2n) when the total

number of nodes of a XML tree is n. In the future,

we plan to investigate a method to consider the node

which has the most decendants as the representative

node for each level of the virtual path.

References

[1] R. Behrens, "A Grammar Based Model for XML

Schema Integration," Proc. of the 17th British

National Conf. on Databases, pp.172-190, 2000

[2] A. Doucet and H. Ahonen-Myka, “Navie Clustering

of a Large XML Document Collection,” Proc. 1st

Annual Workshop of the Initiative for the Evaluation

of XML retrival(INEX), Germany, pp.81-88, Dec.

2002.

[3] J. Yoon, V. Raghavan, and V. Chakilam, “BitCube:

Clustering and Statistical Analysis for XML

Documents,” Proc. of the 13th Int. Conf. on

Scientific and Statistical Database Management,

Fairfax, Virginia, July 2001.

[4] J. Yoon, V. Raghavan, V. Chakilam, and L.

Kerschberg, “BitCube: A 3-D Bitmap Indexing for

XML Documents,” Journal of Intelligent

Information Systems, Vol. 17, pp.241-254,

November 2001.

[5] A. Tagarelli, and S. Greco. “Toward Semantic XML

Clustering,” 6th SIAM International Conference on

Data Mining (SDM ’06), pp. 188-199. Bethesda,

Maryland, USA, April 2006.

[6] H. Lee, “An Unsupervised Clustering Technique of

XML Documents based on Function Transform and

FFT,” Journal of Korea Information Processing

Society, 2007

[7] J. Liu, Jason T., L. Wang, W. Hsu, and K. G. Herbert,

“XML Clustering by Principal Component

Analysis,” Proc. of the 26th IEEE International

Conference on Tools with Artificial

Intelligence(ICTAI), 2004.

[8] J. Hwang, and K. Ryu, “XML Document Clustering

Based on Sequential Pattern,” Journal of Korea

Information Processing Society, Dec. 2003.

[9] K. Wang, C. Xu, and B. Liu, “Clustering

Transactions Using Large Items,” Proc. of ACM

CIKM-99, 1999

[10] Jian Pei, and etc., “PrefixSpan: Mining Sequential

Patterns Efficiently by Prefix-Projected Pattern

Growth,” Proc. 17th International Conference on

Data Engineering, pp.215–224, April 2001.

[11] http://wordnet.princeton.edu/

[12] U. Park, and Y. Seo, "An Implementation of XML

Document Searching System based on Structure

and Semantics Similarity," Journal of Korean

Society for Internet Information, Vol.6, No.2, April

2005.

표 경로에 기반한 XML 문서의 계층 군집화 기법

150 2009. 6

◐ 자 소 개 ◑

김 우 생
1985년 U. of Texas at Austin 산학과 졸업(학사)

1987년 U. of Minnesota 학원 산학과 졸업(석사)

1991년 U. of Minnesota 학원 산학과 졸업(박사)

1992～ 재 운 학 컴퓨터소 트웨어 학과 교수

심분야 : 데이터베이스, 멀티미디어

E-mail : kwsrain@kw.ac.kr

[13] Niagara Query Engine,

http://www.cs.wisc.edu/niagara/data.html

[14] Boberg J., and Salakoski T. "General formulation

and evaluation of agglomerative clustering

methods with metric and non-metric distances,"

Pattern Recognition, Vol.26(9), 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

