E2)AS ol 43 viEgalZe T A5 T15e
7H1 S5 e Bhe) A

Active Network Management System with Automatic Generation of
Network Management Program using Triggers

Al B A o] W Z]#*

R R R

MoonSun Shin MyongJin Lee

MESD Bt e MEND ANES sl FAIL 285 Aol
AA7R B4, AReA, gol el o ge NEPEOR PHEE A2 3
MEAAS R AAL B Qo whe) hake EN D Fn) o o

oAtk SNVP7]] VI ESIZo) 4 eyt E79l VIEYD 45
JEIHE WE W& ATk AR Gy YEDL 87
ofel7] 114 o] RN EelA)i END Bz 1d AEARNE AL SEHA YEYD A
9 AT EGAL oMlE ANM QMo SEFHOE RAHIAN WENZ S A Wsh A7
$ o2 Ak Ee Aot ALE SEA MENT Be) A2HS YENT A UESS FolaAn WAe
A% B 50 BAsE L UENIRY ALY THLAT] ATt swpeel el A ApHE
HES o fae] NEE WEND AH Fe) TIPS AFOE AT FEAU VEADL B ALY AF
AAE EYD Be) Z2IYL olgato] WP MEAT THES EEHOE s o] Folsteh T AWS =
WEQD PRI A7 B v A BhE HALTE AS 492 a4 Fe & Ak

o

o o [2 N i
o

Abstract

Network management involves configuring and operating various network elements in a suitable manner. Generdlly, a
nefwork management system can perform basic functionalities such as configurafion management, performance
management, and fault management. Due o the open structure of the Intemet, the volume of network traffic and the
network equipment used have increased in size and complexity. Therefore, it is expensive and time consuming to develop
a network management program for heterogeneous network equipment in an SNMP based network. In order o facilitate
the management of network environments and the control of heterogeneous devices in an efficient manner, we propose
an Active Network Management Systemn (ANMS) comprising an automatic generator that uses tfriggers fo generate a
nefwork management program. The concept of friggers can be represented through event condition action rules
performed in response fo a change in the status of a network environment. The proposed ANMS comprises basic
components for real fime network management and also includes an automatic generafor (AG). When the ANMS s
monitoring network elements that are newly added or changed, a trigger rule is activated and these components are then
able o collaborate and automatically generate a new network management program by using the information provided
along with the SNMP libraries. Our method is useful for expanding the network structure and replacing network equipment.
Through experiments, we have proved that our ANMS is useful when new network objects are added or changed in the
network environment to expand the network structure.

* A 3 Y Aty AFEA A e wa [2008/04/14 37 - 2008/04/29 XAl 2008/10/15 AAFEE]
msshin@kku.ac.kr ¥ This work was supported by the Korea Research Foundation

¥ 3] 9 JRIARIEF) dEolAL Grant funded by the Korean Government (MOEHRD, Basic
mijlee@galimit.com Research Promotion Fund) (KRF-2006-2-D00849)

o= QIR HEsE| (10319) 19

EZ2[HE 0|28t HIEHI U =20 XSHY

JIsE 71

olr

Sxiol HE9i3 Be| Alag

Further, we have verified that our ANMS system reduces the time and cost required to develop a network
management program as compared o the manual method used in existing network management systems.

= keyword : Active Network Management System, Active Rules, Trigger, Event Condition Action, Automatic Generator,
SEAJNUEHAAYN LY, 5542, EFA, A =4 39, A5 4471

1. Introduction

Nowadays, more efficient methods of managing
networks and services are required because their scale
and complexity is increasing. Network management
has thus gained considerable importance, and it is
becoming an increasingly difficult task. Initially,
network management mainly involved determining
the connection status of an end to end network
using the Internet Control Message Protocol (ICMP).
However, nowadays, information about network
objects such as nodes, interfaces, and services is also
desired. In addition, a standardized network
management scheme for managing networks is
required in order to support different network devices
in a common manner. The Internet Engineering Task
Force (IETF) proposed the Simple Network
Management Protocol (SNMP)[1] as a standardized
specification for the convenient management of the
Internet. Currently, SNMP is widely used for network
management. Due to the open nature of the Internet
and the widespread use of the World Wide Web, most
information systems are implemented in a network
environment comprising various network devices.
Due to the increasing scale and complexity of network
architectures, the paradigm of network management
has gained considerable importance. SNMP based
network management has several advantages such as
a simple structure, ease of implementation, and
interoperability. However, it also has certain

limitations in network management and operation;
these limitations have become apparent with the
advent of high speed telecommunication networks.

In this study, we propose an Active Network
Management System (ANMS) that automatically
generates a network management program in an
SNMP based network environment using trigger
rules. The proposed ANMS provides basic
functionalities such as configuration management
(CM), performance management (PM), and fault
(FM) for real time network
management. In addition, it also includes an automatic

management

generator (AG) that comprises four handlers, namely,
NE Basic Info Handler, MIB Handler, Template
Handler, and Operation Handler. The AG generates a
network management program for new network objects
that are added to an existing network environment.
When the network environment is changed, a trigger
rule is activated. Depending on the type of event, the
ANMS checks the existing conditions and performs a
corresponding action to generate a new network
management program. These components work
together and generate a network management program
automatically using the information provided along
with the network equipment and SNMP libraries. Our
active network management approach is useful for
improving the error rate when developing a network
management program; further, it can efficiently add
new network devices.

This paper is organized as follows. Section 2

20

2009. 2

EZ2[HE 0|28t HIEHI U =20 XSHY

Jl52 71 SEX9I HEHA 2| AlAH

discusses related works and describes their
drawbacks. We introduce the information model for
the concepts of triggers and active network
management in Section 3. Section 4 describes the
use of ANMS to automatically generate a network
management program for heterogeneous network
devices and interfaces to an SNMP based network
management system and its architecture. Section 5
explains the comparison between our approach and
existing methods through experimental results.
Finally, Section 6 presents the conclusions.

2. Related Works

Recent developments in telecommunication
technology, especially the advent of high speed
telecommunication networks, have enabled increased
network capacities; however, network structures have
also become more complex. The development of
network management applications becomes
increasingly difficult because of the large number of
network managed objects. It is necessary for a network
management application to be able to manage network
components automatically. It is practically impossible
to develop a network management application that can
consistently and automatically manage heterogeneous
network managed objects.

Many application programs make use of a Web
based structure to provide various types of data that is
distributed over the Internet and is platform
independent. Many researches are attempting to
integrate various existing management protocols and
tools by applying web techniques to network or system
management[6][7]. However, these researches are not
focused on management based on automated tools.
Developers still prefer manual approaches when
developing network management programs that can

handle
Developing such network management programs for

changed network managed objects.
new network elements requires a long time and is
expensive. In addition, a network manager spends
considerable time modifying errors. Commercial
network management systems such as OpenView[10]
and MRTG[11] generate such network management
programs manually.

In particular, due to the disadvantages of SNMP
based network management systems, many
researchers have applied XML as a scheme to transfer
and process the large amount of data generated in a
vast network effectively[2][3]. These researches
describe information using XML and transfer these
XML documents via HTTP[3][4]. When a client
application processes data for storage in a database, a
standardized XML format is used [5].

This study focuses on how to solve these
abovementioned problems that lead to an increase in
the cost and time required to develop network
management applications. Whenever the network
configuration of a network environment changes, the
network manager must modify or create a new
management application to deal with the new network
elements. Therefore, these tasks increase the cost and
time required to develop a network management
application and distribute it to the newly added
network devices. We require a tool to generate a
network management program automatically for
newly added network elements in a large complicated
network environment.

In this study, we propose an active network
management system that can automatically generate a
network management program for new network
managed objects. Our proposed system can reduce the
development cost and time required and also reduce
network management errors.

et QB FESE| (10212)

21

EZ2[HE 0|28t HIEHI U =20 XSHY

JIsE 71

olr

Sxiol HE9i3 Be| Alag

3. Network Managed Object Model

In this section, we present the information
model of network managed objects for the
proposed ANMS. It is necessary to generate
information about the target managed objects for
the expanded operation of the SNMP libraries that
are essential in the new network configuration
approach. Therefore, we redefine managed objects
and expand the MIB (Management Information
Base) structure in order to design the database
schema.

[Def. 1] Network Element implies the various
devices that are connected to a network, such as
hub, router, printer, server, switch, bridge, etc.
Network management involves configuring and
operating these network elements in an appropriate
manner. The network management server performs
network
management system manages the network system

management, and the network

including the network elements.

[Def. 2] Network Management System is
defined as a set of NE, NMServer, and
NMProgram. NE implies network elements and
NMServer is a system in which the network
management program is loaded. NMProgram
provides services to perform network management
and handle the network elements.

NMS = {NE, NMServer, NMProgram}

[Def. 3] ManagedObject are the target objects to
be managed in the network environment.
Generally, it is represented as a set of Nodes,
Interfaces, and Services

ManagedObjects = {Nodes, Interfaces, Services}

Nodes can indicate any type of network element
such as router, switch, bridge, etc. The types of
interfaces are logical or physical ports of a
network environment for nodes and the types of
services are those services provided through
interfaces such as ICMP, DNS, FTP, HTTP, etc.

[Def. 4] Error is defined as a set of NError,
IError, and SError.

Error = {NError, IError, SError }

NError includes node errors such as Normal,
Pingfail, SNMPfail, and Datawrong.
(interface errors) includes Normal, Linkdown,
SNMPfail, and Datawrong. SErrors includes

IError

service errors and sending failure alerts.

[Def. 5] Trigger is a rule defined as an active
rule in advance. Generally, it is represented as a
set of Event, Condition, and Action.

Triggers = {Event, Condition, Action}

When an event occurs or the network
environment changes, active rules are evaluated to
trigger the AG to generate an appropriate network
element handler.

The ANMS can monitor events of the network
elements that are newly added or changed. When
an event occurs, the condition is checked and the
corresponding active rule is triggered. In fact, all
active rules use the same trigger, that is, to call
the automatic generator. Events mostly involve an
update, delete, or insert operation. Most events are
insert events to add a new network element; these
are implemented by activating the AG.

Examples of trigger rules are as follows.

Rulel: CREATE TRIGGER ADD_NE

AFTER INSERT NETWORK ELEMENT

22

2009. 2

EZ2[HE 0|28t HIEHI U =20 XSHY

JIsE 71

olr

Sxiol HE9i3 Be| Alag

FOR EACH NETWORK ELEMENT
CALL Automatic Generator

Several rules can be predefined and stored in
the active rule DB.

4. Active Network Management
System

The ANMS provides an automatic tool to
generate a network management program based on
the active rules of triggers for newly added
network objects. The network management
program generated from the ANMS is used to
operate and manage the network by integrating

with the SNMP manager.

Active Network Management System

MIB

ans
3

(Fig. 1) Components of Active Network
Management System

Network managers and network program
developers input managed objects that will be
newly added to the network using a user interface.
Then, the event condition action rules are
evaluated. The AG of the ANMS generates a
network management program when a trigger rule
is activated. The ANMS always monitors network

elements that are newly added or changed.
Figure 1 shows the proposed ANMS
framework. The ANMS comprises CM, FM, PM,
AG, SNMP API, and database interface for
managing a vast, complicated network. Active
rules are stored in the active rule database, and
when a new network object is added, these rules
are evaluated and the AG is triggered by them.

4.1 Configuration Management

Configuration management involves managing
and configuring the network equipment. The
network manager manages a group of units
classified as a department or regions of
departments in order to configure the network. We
need to manage node configuration information
sysObjectID,
sysContact, sysLocation, and sysServices and

such as sysDescr, sysName,
interface information such as ifDescr, ifType,
ifMTU, ifSpeed, ifPhyAddress, ifAdminStatus, and

ifOperStatus.

4.2 Performance Management

Performance management involves optimizing
the traffic performance of a network through
adjustments to the network design by monitoring
the network status. A network manager can
perform node, interface, and service management.
First, the node performance can be managed by
monitoring the CPU and memory usages; if the
usages cross a certain threshold, a TCA (threshold
crossing alert) is generated. The TCA is a control
attribute for performance management that can be
used to identify the status of a network managed
object. Second, we use data such as interface input

usage, input throughput, input error rate, and input

ron

= QlEfl HEstE (10213)

23

E2|HE o|Set HEHI UL =2 AW 7152 71 SSHel HESRA 22| A[LH
discard rate for interface performance management. e ot b
Finally, the service performance can be managed ﬁ%]
Default MIB Finfl MIB file
1 1 1 1 NE Basic MIB
by using the status, node, and interface information NEBISIC |gnretiensrnssscnness e
of the current network service. § o ttoommtivacr
§ Basic information. of components
[v 1
SNMP lib.
Template . Operation .
4.3 Fault Management] S e v

Fault management performs automatic real
time monitoring of faults in a node, interface, or
service in the network. Faults are classified into
four types depending on their level of seriousness.
Critical faults are those that cause serious
problems in the system. Major faults are those that
cause important problems in the system and lead
to problems in the network operation. Minor faults
are general faults that cause problems in the
system, but do not affect the network operation.
Warnings are faults that are only intimated to the
network manager; these only require that the
network operation be checked.

4.4 Automatic Generator

In the network environment, active rules are
evaluated when events occur; the ANMS allows
active rules to trigger the AG.

The AG generates a network management
program automatically; it comprises the NE Basic
Info Handler, MIB Handler, Template Handler,
and Operation Handler. Figure 2 shows how a
new network management program is generated
for a newly added network element; the
relationships of the four handlers of the AG are
also shown.

The functions of these handlers are described in
detail below.

-
Output: NetworkManagementProgram of new Network Element

(Fig. 2) Four Handlers of the AG

NE Basic Info Handler

This component stores and creates basic
information about network management objects
that will be managed by the network application.
In order to create this basic information, we
require the following information: (1) class name
of the new network management program and
program name of the network managed objects,
(2) file name of the MIB used by the network
manager to specify the network managed objects,
(3) object name for the specific network
management object, (4) acceptance or rejection of
method for set operation of SNMP, and (5)
acceptance or rejection of method switching over
from a specific numeric data contained in the MIB
to character data. We will generate a network
management program based on this information.

Template Handler

The template handler supports formal
information such as the template header and
template tail that are commonly used in the
generated network management application. The
template header defines the name of the network
management

application and the necessary

application variables. The template tail defines the

24

2009. 2

E27{E /8 HEY AT TR Y XSy

()

JIsE 71

olr

Sxiol HEYT 2| AlAg

()

source code that configures the debugging method.

In the next section, we will analyze the
performance of the framework by applying the
generated network management application to an

actual network management system.

MIB Handler

The MIB handler constructs an MIB information

tree to generate a network management
application. The MIB information tree represents a
hierarchy of MIB objects. The MIB handler
extracts the identification values of MIB objects
that are a target for the network management
application from the MIB information tree, and
builds a tree after parsing the content of the MIB
file. The MIB objects are managed and classified
as single and entry objects; a single object implies
that the MIB object attribute corresponds to one
attribute value in the MIB information tree. The
MIB information tree is created using a two step
process. In the first step, the MIB handler reads
the MIB files corresponding to more than one
MIB filename selected in the basic data selection
step (NE Basic Handler). After reading the MIB
file, we generate the MIB file information tree
from the read MIB file (the MIB file information
tree is generated from the read MIB file). In order
to generate the MIB information tree, we use
default the MIB file and a user defined MIB file.

Operation Handler

The operation handler manages operations for
SNMP execution. The SNMP protocol has four
types of operations, namely, Get, Get Next, Set,
and Trap. The Get operation reads management
information such as the status and runtime of a

network managed object. The Get Next operation

obtains lower layer information from the
hierarchical tree structure. The Set operation
handles the MIB of the network managed object.
The Trap operation is a threshold or event that is

reported to the manager.

4.5 Process of Active Network
Management

In this section, we describe the process of the
proposed ANMS with AG. The flowchart shown
in Figure 3 describes the overall process of the
automatic generation of a network management
program in the ANMS.

(stat]

Set the basic information

[[opiect info file }—’{

‘ Construct MIB information

v
2 Extract MIB info
?
Exist upper MIB? from MB db
no

Header templet file H Make header part of network application program ‘

Load MIB files |

‘ Make body part of network application program ‘

Tale templet file H Make tale part of network application program ‘

(Fig. 3) Process of automatic generation of
network management program of new
network element

First, the NE Basic Info Handler produces basic
information about the network managed object.
Figure 4 shows the results of the output of the NE
Basic Info Handler.

The basic information setting can be used to set
the PACKAGE and java CLASS filename; it
decides the names of the MIB files for the
managed object. The value of OBJECTNAME

ron

= oleful F=als (10213)

25

E27/8 0183 HEY IR Z20H THEMY

Jl52 71 SEX9I HEHA 2| AlAH

defines the managed object as a simple object or
entry object, and it maps a specific value to the
managed object.

The Operation handler manages operations for
SNMP execution.

The MIB Handler constructs the MIB tree using
the user defined MIB files and the MIB file
from the MIB databases supported by network
device vendors.

Figure 5 shows an example of an MIB tree. A
network managed object defined by the NE Basic
Info Handler must be extracted to MIB 1I and
assigned the value of sysDescr or ifEntry to
determine if it is a simple object or entry object.

TUT () 150 (1] Joint ISO/ITUT (2)
Standeand (0) SO member 150 identifiod
body 2] oiganization [3]
us .. OpenSolware ... NATO
DaD (&) Feundalien [22] identified [57)
Imberng | 1)
directory 1] | experimental (3) | seculi-'yfs: '|105I| 1
manogement (2] private [4) sampv (&)
B2 (1)
system (1] addiass wmp 15) wdp (7) emat {9) sorg (1 1)
wanskation [J) |
nterdace (2] ip 18 wp &) egp 18] s rmsan | 14]

migsion [10}

(Fig. 4) Output of NE Basic Info Handler

PACKAGE = com.galimit.netune.snmp

CLASS = SnmpTest

LOADMIBFILE =
D:\Projects\SnmpGenerator\RFC1213 MIB.my
LOADMODULE = RFC1213 MIB
OBJECTNAME = sysDescr

OBJECINAME = ifEntry

IGNORENAME =

SET = true

(Fig. b) Example of MIB tree

Algorithn: Active Program Generation
Inprit network element name, default MIE file name,
user MIB file name, SNMP operation
Oulput: Network Management Program
Method:
<Begin >
1. Load <Info File=
2. Betup Program Parameter
3. Load <Default MIE File>
4. Make Default MIE Tree
5. Load <User MIE File=
6. Addto Default IMIB Tree
7. Load <Header Template File=
8. Generate Program Source [Program Header, Variables,
Interface Functions, SNIMP get Functions}
9 if Entry Object Exist
10. Generate Program Source {Entry Object output function}
11. Search MIB Tree for set operation enabled MIB Obiect
12, if set operation enabled MIB OUbject Exist
13, Generate Program Source {SHIMP set Functions}
14, Generate Program Source {inner Class)
15, if enumeration function required
16, Generate Program Source {enumeration Functions}
17. Load <Tail Template File=
18. Generate Program Source {Program tail }
19 Save Program Source
<End=

Fig. 6 Active generation algorithm for ANMS

Finally, the Template Handler generates templates
of the header, tail, and body part of the network
management program called Network Element
handler. NE handler is an execution file of the
network handling program for the new network
managed objects using SNMP libraries and MIB
information.

Figure 6 shows the algorithm for the active
generation of a network management program
called NE handler.

I

I \Proiects\SompGeaerator EJ Heg

g -
et Bg 1?;9ﬁezf5mz.m'samv

11 9488 ses.520 wol= we
(Fig. 7) Work directory after generating network
element handler

o
fo o e e
Pttt

[T
P
r-..r-.:n.uu

26

2009. 2

E27{E /8 HEY AT TR Y XSy

()

JIsE 71

olr

Sxiol HEYT 2| AlAg

()

The results of the work directory after
generating the network management program is
shown in Figure 7. We can see the MIB files
referenced, MIBdef.txt,

snmpTest.class.

snmpTest.java, and

5. Experiments

We evaluated the efficiency of the generated
application through the proposed ANMS. The
constraint of this experiment is that it is
impossible to collect information about the
network objects with both the manually and
automatically ~generated network management
programs in ANMS because the network
management system manages the network status in

real time.

Performance graph

Search condition comparison

R e

Fig. 8 User Interface of ANMS

Because of the volume of traffic, the network
input constantly changes. Therefore, we compare
the manually and automatically created network
management programs under the assumption that
the network environment and network objects are
the same. We also evaluated the efficiency,
development time, and error rate. In addition, we
analyzed the reliability of the proposed system
through experiments to check whether the system

could manage the network efficiently.

Our ANMS was implemented and applied to a
real network; the interface of the ANMS is shown
in Figure 8.

In order to verify the network management
program generated by our ANMS system and the
existing method (manual method), we obtained
information from the network objects, as listed in
Table 1.

(Table 1) Example of network components

Node type Node IP Node Name
211.196.xxx.127 ROUTER
211.196.xxx133 |KT 9Z25FJCHPIZS8

Router

Windows Server

Therefore, we compared the network manageme*‘nt
programs generated by both the manual and
methods for the same
environment and network managed components.

automatic network

The network management system monitors the
real time network status. It is impossible to
obtain information about the network objects in
both the manually and automatically generated
network management programs simultaneously in
a real network because there exist many
differences in the network traffic over the course
of time. The proposed ANMS can be validated by
both methods as we check and compare their
results.

We conducted the experiments on a computer
running Windows 2000; Java was used as a
programming language to develop the AG module.
In addition, MySQL was used to store the network
information and MIB information in a database.
related to the
environment variable set for the Java class path

and the SNMP library directory for the SNMP

The following constraints

ron

= QlEfl HEstE (10213)

27

E2|7E 0|28t HEYIRZ|=Z2T XSMN J|58 I

olr

Sxiol HE9i3 Be| Alag

API are used.

* Network management program generated by
AG must be located in a specific directory.
We set the directory as “D:\product\Radicle\”
for the SNMP operations.

* The directory referenced by the MIB files
and network objects information when the
network management program is generated is
set as “D:\product\SnmpGenerator\”.

* The SNMP library used to generate the network
management program is “com.galim.net.snmp”.

We compared the results of each network

element listed in Table 1 for the validation of the
AG of ANMS.

object information that was produced by both

methods for the same network element (router).

(B A0 0D SR
o Router (Hami), 21,106 00e.127, W, AoUTER, 1. W, 20

B TN (WCTETS _IMGASTPKTS _INMIGASTPRIS _INUTILIZATIGN OUTOCTETS _ONTUGASTPNIS OUTMUGASTPNTS _OWTUTILIZATIDN

0:00:10, i, 7. .00, 2021786, 1Mz, Aom, (R0

i 2020, i, L1110, S92, 20002, nm, 1.0

: 1108, n . 2mssa, 1988, g 02481

s, 0 103, 1.3005

17545, o 17058, 0,836

a9, 7 500, 793

21997, 15 2478, [

1756, 2, 15367, 07665

20292, 1 1739, 07206

25unm, n 20049, 1.0

2549, W, 220, e

3n, W 2097, 120

20218, , 2227 12

2111, 5 207 1280

20500, 2 25902 1503

a0z, 3 2um 1.7

20269, 20 2109 15047

e, n 15695 L2500

w2, 3 7545 .67

12600, 0, 1210 e

11300, " 11511, 0,920

1076, " 11078, 007

niie, ' 180, 15011

] 50552, " L br7sAn, [W.9181

(Fig. 10) Results for automatically generate
network management program

n " 0 " KT-9225F JCNPIZY, 2, s, Bdres "
S, s s T
0585, a2, 5. 292, i 0,087
139458, a3, 2, m, 7, 0,0041
o ; iy L

(Fig. 9) Results for manually generated network
management program

We obtained the values of ifEntry objects at
intervals of 5 min for 24 h. The obtained
information included the number of input octacts,
number of packets in input unicast, numbers of
output octacts, number of packets in output
unicast, and input/output ratio.

Figures 9 and 10 show the results of the
network management programs generated by the
existing manual process and by the AG of the
ANMS, respectively. We can validate the ANMS
system by comparing the results of the network

(Fig. 11) Information obtained form Windows
Server for manually generation program

Figures 11 and 12 show the information
obtained from the Windows Server, and the results
were found to be the same in the case of the
router. These results validate the proposed ANMS.

Although the results of both methods are
identical, the proposed automatic generation of
network management programs is more efficient
than the existing manual method in terms of the
development cost and maintenance required. We
applied ANMS to a real network and found that it
operated normally without any errors.

28

2009. 2

o Jlsg 71

olr

Sxiol HE9i3 Be| Alag

201,

s, 0,
203,

20m,
8,
7
9,
i,
e
a7

20m,

(Fig. 12) Information obtained from Windows
Server for automatically generated
program (ANMS)

The result obtained from the collected information
for the router and Windows Server using the
network management program generated using
ANMS has no errors. Further, we can reduce the
costs incurred for the maintenance and management
of the network management system. Figure 13 shows
the monitoring results of input/output traffic of the
router when connected to the network using the
network program generated using the ANMS.

Output Traffics

nput Traffies || { H

Khytes

Time {hour)

(Fig. 13) Result of router using network program
generated using ANMS

Figure 14 shows the monitoring results of
input/output traffic of the Windows Server when
connected to the network using the network

program generated using the ANMS.

dmeny
o)

B

ak) Input Traffics |
1 / U
o

130N

|

21 I ']
| 1
J J Output Traffics “‘

g

2 | i

o I U
0
: [‘ 1 l\’yl ‘J ! I I.NK w
) L}w s.l al 'ﬂ.'- I; ""u 'W]’\r 'l p’[\,‘
v, J W gl
B Lk \ P WM A
IR R W e 00 0 e e nl e mE 56w
Time (hour)

£k

Nona s U o

- 82 i

(Fig. 14) Result of Windows Server using
network program generated using ANMS

We have proved that our ANMS has no errors
during the execution of a generated network
management program when applied in a real
application (i.e., with other types of network
components such as Linux server, switch, etc.).
We can ensure that our application causes no
errors and has high efficiency.

For a CICSO router object, we must analyze an
MIB of 1416 lines with a total of 5705 lines. A
total of 5705 lines implies that 4868 lines are for
the common module and 839 lines are for only
the CISCO module. Here, we consider the CISCO
module. In order to verify the result of the CISCO
module, we repeat the test step followed by error
modification until no errors exist.

Table 2. Example of network object

Object
Name

Network Object Description

Cisco Internetwork Operating System
Software 105 (tm) (3550 Software
(C3550 I5Q3L2 M),

CISCO | Version 12.1(13)EA1,

Router | RELEASE SOFTWARE (fc1) Copyright (c)
1986 2003 by Cisco Systems, Inc.
Compiled Tue 04 Mar 03 03:10 by
yenanh

ron

= QlEfl HEstE (10213)

29

E2|7{2 0|23 HEYARIZ2 Y XS

JIsE 71

olr

Sxiol HE9i3 Be| Alag

Tim elhour

ﬂ V

Anabeis & Design Imp s me ntatio n Test Teml

| O existing method m proposed method |

(Fig. 15) Comparison of development time
between manual and active methods

Next, we employ this module in the network
management system. The verifying processing
terminates when this module monitors the CISCO
and finds it
Otherwise, we repeat this process.

Router functioning normally.

Interface Traffic of CISCO Router

250,000

—— Input wraffic ——Qutput traffic

226000

200,000

" |
é Al \1

| |
. MN L@M N

00:00 02:00 0400 06:00 08:00 1000 1200 1400 16:00 1800 2000 22:00 00:00
Time (hour)

=

(Fig. 16) Result of Input/Output traffic of CISCO
router

Figure 15 shows the test results of the two
methods. The method
approximately 1 week for analyzing all the lines
and 3 days for developing only the CISCO module.
The comparison reveals that we can reduce the

existing requires

total time required to generate the mnetwork

management program by 36% using our system.
We find that the information obtained from the

CISCO router object using the network

management program generating using our system

has no errors. Further, we can reduce the costs
incurred for the maintenance and management of
the network management system. These results
confirmed the usefulness of our system. Figure 16
shows the monitoring results of the input/output
traffic of the CISCO router connected to the
network using the network program generated
using our system. Here, the upper and lower lines
indicate the output and input traffic, respectively.

6. Conclusion

A network management system monitors
network elements such as nodes, interfaces, and
services. It allows users to access Web services
conveniently by detecting faults. When most
components in a network are managed manually,
significant time and cost is required to develop a
network management program. Automation
techniques facilitate the management of a network
environment and the control of heterogeneous
devices. In this study, we propose an Active
Network Management System (ANMS) with an
automatic generator for generating a network
management program using triggers. Active rules
represented as event condition action rules are
evaluated in response to a change in the status of
the mnetwork environment; they trigger the
Automatic Generator to create a new handling
program for the network element.

We also presented the information model for
our ANMS.

We have verified the performance of our system
with respect to the automatic generation of a
network management program in a real network
management system.

Our ANMS reduces the cost and time required

30

2009. 2

EZ2[HE 0|28t HIEHI U =20 XSHY

JIsE 71

olr

Sxiol HE9i3 Be| Alag

to develop a network management program for
each network equipment; further, it decreases the
error rate and cost of maintenance of the network

management program.

References

[1] Stallings, W.: SNMP, SNMPv2, SNMPv3, and
RMON 1 and 2. 3rd edn, Addison Wesley,
Reading, MA, USA (1999)

[2] Ju, H.T., Han, S.H., Oh, Y.J., Yoon, J.H., Lee,
H.J., Hong, JW.: An Embedded Web Server
Architecture for XML Based Network

IEEE/IFIP Network
Operations and Management Symposium,
Florence, Italy (2002) 5 18

[3] Kim, Y.D., Cho, K.Y., Heo, J.H., Cheon, J.K.,
Cho, S.H.: Network Management System by
using Transfer SNMP. Proc. of KNOM
Conference, Taejeonn, South Korea, May
(2001) 102 106

[4] Barillaud, F., Deri, L., Fedirum, M.: Network

Management. The

Management Using Internet Technologies. Proc.
IEEE/IFIP International Symp. On Integrated
Network Management, San Diego, CA, USA
(1997)

[5] Deri, L.. HTTP Based SNMP and CMIP
Network Management. Internet Draft, IBM
Zurich Research Laboratory (1996)

[6] Pell, H.A., Mellquist, P. E.. Web Based
System and Network Management. Internet
Draft, Hewlett Packard (1996)

[71 WBEM: http://wbem.freerange.com

[8] Perkins, D., McGinnis, E.. Understanding
SNMP MIBs, Prentice Hall (1997)

[9] Case, J. (et al): Management Information Base
for Version 2 of the Simple Network
Management Protocol. IETF, RFC 1907 (1996)

[10] OpenView: http://www.openview.com

[11] MRTG: http://people.ee.ethz.ch/~oetiker/webtools/
mrtg

[12] Lee. M. J.: A Network Management System Based
on Active Program Generation. Ph.D. Thesis,
Chungbuk National University, Korea (2005)

OXM A 2=HO0

Al M

—_ e -

gl

ARk« HelEu o]~

—

E-mail : msshin@Kkku.ac.kr

ol & &

E-mail : mjlee@galimit.com

19879 FHskm AAEA Y SUEH)
19979 FHek vjskd AAA A 2R
20049 FEojst sty WA S0ehah
2005~ @A AFTstE AFEA 2T gl as
dl ol B pkold, AU E 9, RFDRS etc.

19849 FETistw AL A SR ZU9(3Hh

19861 ATt ekl MAA e} S A(HAh

2005 SEOIst st AAA S A
1989'd-2001'd A olEll2E FAIALE FAHAAR LF
20002~ AA FFEA R EF) thEo|A}

FHAIFE-oF :NMS, GIS, USN , U-health etc.

31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

