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실시간으로 악성 스크립트를 탐지하는 기술☆

The Real-Time Detection of the Malicious JavaScript

추 현 록1 정 종 훈1 김 환 국1**

Hyun-Lock Choo Jong-Hun Jung Hwan-Kuk Kim

요    약

자바 스크립트는 정적인 HTML 문서에 동적인 기능을 제공하기 위해 자주 사용되는 언어이며, 최근에 HTML5 표준이 발표됨으로써 

더욱더 관심 받고 있다. 이렇게 자바 스크립트의 중요도가 커짐에 따라, 자바 스크립트를 사용하는 공격( DDos 공격, 개인 정보 유출 

등 )이 더욱 더 위협적으로 다가오고 있다. 이 악성 자바 스크립트는 흔적을 남기지 않기 때문에, 자바 스크립트 코드만으로 악성 
유무를 판단해야 하며, 실제 악성 행위가 브라우저에서 자바 스크립트가 실행될 때 발생되기 때문에, 실시간으로 그 행위를 분석해야

만 한다. 이러한 이유로 본 논문은 위 요구사항을 만족하는 분석 엔진을 소개하려 한다. 이 분석 엔진은 시그니쳐 기반의 정적 분석

으로 스크립트 코드의 악성을 탐지하고, 행위 기반의 동적 분석으로 스크립트의 행위를 분석하여 악성을 판별하는 실시간 분석 기술
이다. 

☞ 주제어 : 악성 자바 스크립트, 분석 엔진, 정적 분석, 동적 분석, 스크립트 기반 사이버 공격

ABSTRACT

JavaScript is a popular technique for activating static HTML. JavaScript has drawn more attention following the introduction of HTML5 

Standard. In proportion to JavaScript’s growing importance, attacks (ex. DDos, Information leak using its function) become more 

dangerous. Since these attacks do not create a trail, whether the JavaScript code is malicious or not must be decided. The real attack 

action is completed while the browser runs the JavaScript code. For these reasons, there is a need for a real-time classification and 

determination technique for malicious JavaScript. This paper proposes the Analysis Engine for detecting malicious JavaScript by 

adopting the requirements above. The analysis engine performs static analysis using signature-based detection and dynamic analysis 

using behavior-based detection. Static analysis can detect malicious JavaScript code, whereas dynamic analysis can detect the action 

of the JavaScript code.

☞ Keywords: Malicious JavaScript, Analysis Engine, Static Analysis, Dynamic Analysis, Script-Based Cyber Attack

1. Introduction

Existing web attacks are mostly of the drive-by-download 

type. This type of attack induces users to install the malware 

and execute the attack using the malware. Note, however, 

that a script-based cyber-attack is different because it can 

execute an attack only with a user accessing a particular page 
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with a browser. The reason such attack is dangerous can be 

briefly described as follows:

A script-based attack is not generated by an executable 

file such as malware. Since the attack is executed with 

the running of a script by a browser, it can easily bypass 

the existing intrusion detection system (IDS) and 

intrusion prevention system (IPS), which are used to 

detect the malware.

An obfuscation method is a technology that is often used 

to protect the source in JavaScript; it is used by most 

script-based attacks to bypass the code detecting systems.

In HTML5, JavaScript supports so many functions that 

it can replace ActiveX. They include not only audio, 

video, and other media management functions but also 
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access to the local storage of the browser. An attack is 

very likely to use these functions.

This paper introduces the Analysis Engine for detecting 

malicious scripts in real time. The Analysis Engine consists 

of signature-based static analysis and behavior-based 

dynamic analysis. A signature is an object that expresses the 

unique pattern data defining a known malicious script. Static 

analysis checks if the pattern is found in a script code. Note, 

however, that static analysis cannot find the patterns in the 

variants of malicious script or obfuscated script since the 

code patterns are altered. So Dynamic analysis is performed 

to supplement it. Dynamic analysis tracks the API flow 

through the JavaScript engine in order to analyze the 

behavior of the JavaScript code. Since the behavior 

generated by a malicious script is completed by a native 

function[1] that can access the system, the syntax may be 

changed by code obfuscation or polymorphism, but not the 

API flow that determines the behavior[1][2].

(Figure 1) Risk of Script-Based Cyber Attack 

The rest of this paper is organized as follows: Chapter 2 

discusses related research; In Chapter 3, we present the 

system architecture and flow and describe more details of 

each analysis method; Finally, the conclusion and future 

study direction are presented in Chapter 4.

2. Related Research

There are several ways to analyze the data flow to detect 

malicious scripts. Well-known FLAX[3] creates JASIL 

(JAvascript Simplified Instruction Language) using the 

JavaScript engine just like the Analysis Engine. JASIL is the 

simplest expression of data and execution defined by 

JavaScript standard[4]. FLAX finds the critical sinks 

accessing the data such as user privilege, code generation, 

and cookie and input the randomly generated data using the 

black box fussing method and executes the sinks to detect 

potential risk factors. Staging framework[5] creates the stage 

containing the policy to restrict data flow and DOM access. 

When a hole (external JavaScript loaded through the 

network) accesses the stage while interpreting the JavaScript 

code, the stage's internal restricting policy is changed 

according to the hole. A script is judged to be malicious if 

it violates the internal policy. Other methods[6] of detecting 

the malicious script include the method using the abstract 

syntax tree (AST) and control flow graph (CFG). The script 

code is interpreted to create an AST at first, and the main 

body of each function in AST is organized to CFG. CFGs 

are executed through symbolic execution, with the result 

summarized and stored in the function summary. The 

summaries are analyzed to detect malicious scripts. Note, 

however, that this technology works only with PHP.

Although the detection methods described above can 

effectively find the latent malicious scripts in batch 

processing, they are not suitable for real-time processing 

because these require a long time and a lot of resources for 

the analysis in many execution paths. There are rule 

set-based detection methods such as IDS developed for 

real-time processing, but they have limitations since they 

cannot detect new attack types[7].

This paper proposes an Analysis Engine that supplements 

the aforesaid weaknesses and consolidates the strengths.

3. Proposed Technology

The Analysis Engine seeks to detect as many malicious 

scripts as possible through fast static analysis and find other 

variants of or obfuscated malicious scripts through dynamic 

analysis. Since the static analysis checks if a malicious 

pattern exists in the inputted JavaScript code, it can be 

quickly processed without additional code processing.  

Dynamic analysis tracks the flow of API created when the 

script is executed in the JavaScript engine to define the 

behavior and checks if the behavior is similar to that of a 

known malicious script. The malicious script data detected 

by the dynamic analysis is used for creating the signature 

used by the static analysis.
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Such updating of the signature for static analysis 

minimizes opportunities for dynamic analysis; thus 

shortening the average delay time of malicious script 

analysis and eventually enabling real-time processing.

(Figure 2) Analysis Engine Architecture

3.1 Applied Technology

Before going into the details of the Analysis Engine, the 

applied technologies will be described to aid in 

understanding of the operation of the Analysis Engine.

3.1.1 Conjunction Pattern

Candidate string tokens are extracted from input 

documents and prioritized based on how many times the 

tokens were used by all documents. The conjunction pattern 

[8] is a group of tokens refined and restructured based on the 

priority. In other words, it consists of the most used tokens 

in all input documents.

3.1.2 YARA

YARA[9] is used to detect or categorize the malware. The 

biggest strength of the technology is that it can include many 

data expressions in the detection rule. For example, usual 

text string, Hex character string, and regular expression can 

be included. It can also be applied in diverse environments 

since the control condition of the expressions can also be 

included in the rule set. And the speed was significantly 

increased in version 2.0 or later. 

The Yara rule set containing the conjunction patterns of 

the malicious script is called “signature” in this paper.

(Figure 3) Process of Signature Creation

3.1.3 JavaScript Engine

The JavaScript engine analyzes the syntax of a script and 

executes the script in accordance with ECMA-262[4] as the 

JavaScript standard such as Chakra of IE or V8 of Chrome. 

When a script code is analyzed for syntax or executed in a 

JavaScript engine, users can check the caller/callee name and 

input data through API hooking. These data enable tracking 

of behavior of the script.  Since ECMA-262 does not define 

the functions related to DOM (Document Object Model) 

[10], DOM APIs should be additionally ported so that the 

browser behavior is accurately understood.

The script execution data created in the JavaScript engine 

is called "call trace" in this paper; the call trace of the 

malicious script used for malicious detection is called "call 

trace signature." 

3.1.4 SimHash

SimHash is a similarity analysis algorithm using LSH 

(Locality Sensitive Hash). Unlike the general function used 

in mathematics, LSH[19] maximizes the collision probability. 

In other words, it generates similar result for similar items. 

The input data is transformed into a fingerprint arranged in 

byte array of a specific length regardless of size by LSH. 

The similarity distance[11] is measured between the created 

fingerprints using the Hamming distance[12]. 

SimHash is used to compare the similarity of call trace 

signature and call trace through the dynamic analysis of the 

script behavior.

3.2 Static Analysis

Static analysis is mainly divided into two parts: signature 

check, which detects the malicious scripts using the pattern 

data of signatures, and; malicious risk scanning, which 
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determines the additional risk for the dynamic analysis. If the 

signature check fails, malicious risk scanning is performed; 

the input script is considered safe if the score of the 

malicious risk is below the threshold. Figure 4 shows the 

work flow of static analysis.  

(Figure 4) Static Analysis Work Flow

3.2.1 Signature Check

A stored signature in the signature storage contains the code 

pattern data of an already detected malicious code. If a script 

matches the pattern data, the script is very likely to be one of 

the malicious script types used for the creation of the signature. 

Table 1 below shows the result of the signature inspection.

This matching job is performed by the YARA module. 

When a specific pattern is detected, the YARA module 

outputs the file location of the detected character string.  We 

will track the area where the tokens in the signature are most 

concentrated; the tracked area data of the malicious code will 

be used to remove the malicious code later.

Malicious 
Type

XHR 
Dos

Hash 
Dos

IP 
Scan

Port 
Scan

Worker 
Dos

File 
API

Geolo
cation

Total

Total 
Number

(A)
80 80 80 80 80 80 80 560

Detection 
Number

(B) 
80 80 74 74 80 71 80 539

Detection 
Rate

(B/A)*100
100% 100% 92.5% 92.5% 100% 88.7% 100% 96.2%

(Table 1) Result of Signature Check

3.2.2 Malicious Risk Scanning

Even if a script passed the signature check, it may still 

need to be checked by the dynamic analysis because it is 

difficult to detect new types or transformed/obfuscated 

malicious scripts with signatures[13]. Malicious risk scanning 

measures the risk of input scripts by inspecting the risk 

factors described below and decides whether dynamic analysis 

is needed by comparing the risk level with the threshold.

HTML5 Tag Check

The existing HTML4 malware detection technology can 

be bypassed using the newly created tags or attributes. For 

example, XSS (Cross Site Scripting), which was the big issue 

in OWASP 2013, is more likely to use new HTML5 tags 

such as video and audio[14]. This function checks the use of 

such risky new HTML5 tags. A detailed weight factor can 

be assigned to each new tag to measure the risk score 

according to the flow of attack. The score is calculated as 

follows:

 
  













 
 
  

JavaScript API Check

JavaScript API contains many functions that can be 

abused by malicious scripts. They include eval, 

document.write, and setTimeout[15]. The final behavior of a 

malicious script is completed by the system API accessing 

the File I/O, DOM, and Network[16]. As such, potential risk 

can be detected by inspecting the use of such functions. A 

weight factor can be assigned to each JavaScript API 

function for more detailed risk analysis. The score is 

calculated as follows:


  













 
 
   

Obfuscation Check

The obfuscation technique is frequently used by malicious 

scripts to bypass the signature-based detection, and more than 

70% of malicious scripts reportedly used the obfuscation 

technique[15][17]. It is difficult for signature-based detection 

to find such obfuscated script because there are so many 

different types, and new obfuscation techniques continue to 

be found[13]. As such, static analysis only judges the 

possibility of obfuscation; dynamic analysis determines 

whether the behavior is malicious. 
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Source Type Sample Number Detection Number

 Base62/Base64/

 Packed Encode
124 107(86.2%)

 Not Encode 344 58(16.8%) 

Obfuscation is judged in three factors. First, entropy[18] 

measures the distribution rates of all characters and checks 

how evenly they are spread.

 
  






log














   

 
  





Here, B is the set of all bytes, and bℹ is the individual 

byte in the whole document. Second, the n-gram entropy rate 

calculates the distributions of special characters (punctuation, 

symbol, etc.) and measures their ratios to the total entropy.  

 


, S={ 0x21-0x2f, 0x3A-0x40,

0x5b-0x5f, 0x7b-0x7e }

The characters included in S are the special characters 

including any of “!“#$%&‘{}*+,-./:;<=>?@[\]^_`{|}~”. This 

factor represents the relative distribution of special characters 

that are frequently used in obfuscated statements. The last 

factor word size[18] is used to check character strings longer 

than a specific size in the script code to suspect them as 

obfuscated statements. Each of the three factors above is 

assigned a weight factor and a critical value to identify 

obfuscation as needed. Table 2 below shows the result of an 

obfuscation test.

(Table 2) Result of Obfuscation Check

The obfuscation test above reveals 13.8% false negative 

and 16.8% false positive. Therefore, this test is used only to 

identify scripts suspected of being obfuscated. TE, TR, and TW 

are the critical values of Entropy, N-gram Entropy Rate, and 

Word Size, respectively. If a factor exceeds its respective 

threshold value, the respective weight factor -- WE, WR, or 

WW -- is reflected on the score.

 ≥  ≥  
 ≥ 

Malicious risk scanning has a different weight factor for 

each of the above test scores. For example, a higher weight 

factor may be assigned to the HTML5 tag check if the threat 

of HTML5 attacks increases; obfuscation check may be 

assigned a higher weight factor if there is higher occurrence 

of obfuscation in the malicious code. The weigh factors help 

users flexibly cope with risk factors. The final risk score is 

calculated as follows:

  

3.3 Dynamic Analysis

The script suspected to be malicious by the malicious risk 

scanning is run in the JavaScript engine to track the API 

flow and analyze the behavior. The API flow data are 

recorded in the aforementioned call trace, and malicious 

scripts are detected by analyzing the similarity with the call 

trace signature. Figure 5 shows the detailed work flow of a 

dynamic analysis.

(Figure 5) Dynamic Analysis Work Flow

3.3.1 Call Trace Generation

As described above, call trace is the recorded data of API 

functions that are sequentially called when the JavaScript 

engine analyzes the script syntaxes and are executed. The 

API record data include the names of native APIs (JavaScript 

API and DOM API) and the parameter data inputted to this 

API. The reason only native APIs are recorded is that the 

user-defined functions or data inputted to those functions 

cannot be used as the criteria for identifying the malicious 

behavior because they can be easily altered by users. The 

most important reason is that a malicious behavior is 

completed by the native API that can access the system; the 
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input data determining the direction of malicious behaviors 

must eventually be restored to their input data form suitable 

for the API when the native API is executed even when the 

data were transformed or obfuscated[1][2][15][16]. We also 

tracked the location data in the original script code and 

recorded it in the call trace so that they can be used for 

removing the malicious code and generating the signature in 

the future. It uses the interpreter nature of the JavaScript 

engine analyzing the syntax in units of character string and 

executing it immediately. The engine always saves the 

location data of the original code in order to read the next 

character string. Figure 6 shows the details of work flow call 

trace creation.

(Figure 6) Process of Creating the Call Trace

 

3.3.1 Call Trace Match

The API flows as shown in Figure 6 because of the 

execution logic of the JavaScript code defined in ECMA-262 

[4]. Only one JavaScript execution context[4] can be 

executed; other contexts are stored in the stack. If there are 

multiple script syntaxes, a script code will be on standby 

until the preceding script code execution is completed, so the 

sequential API flow is created. Therefore, scripts that generate 

similar malicious behaviors also have similar API flows. The 

call trace match uses it to detect the malicious script. 

(Figure 7) Process of Call Trace Match

As shown in Figure 7 above, a call trace has the 

beginning ① and end ② function of an API flow. They 

generally correspond to the beginning and end of a behavior. 

The call trace match checks if there is a section that ends 

with ① and ② in a call trace containing the execution data 

of script codes, extracts the section into a sub tree, and 

compares it with the call trace signature. The reason for the 

process is the nature of SimHash wherein the result similarity 

analysis is more accurate when the sizes of the compared 

data are similar[11].

   

′  

The similarity between a sub tree and a call trace 

signature is checked by the formula above. Here, b means 

the bit length of h,h’ as the fingerprint created by SimHash. 

The number of bits -- whose XOR (Exclusive OR) is 1 -- 

between arrays of bits of fingerprints is then obtained. It 

becomes the Hamming distance [12]. If the final similarity is 

above the threshold value, we judge the script that created 

the sub tree to be a variant of a malicious script used for 

creating the call trace signature. If not, we judge the script 

to be in safe status. If a script is judged to be malicious, the 

we collect the location data of the malicious part from the 

call trace and creates the domain data of the malicious script 

code. The domain data will be used to generate the signature 

and remove the malicious code.

Malicious 
Type

( Obfuscation )

XHR 
Dos

Hash 
Dos

IP 
Scan

Port 
Scan

Worker 
Dos

File 
API

Geolo
cation

Total

 Total 
Number

(A)
240 240 240 240 240 240 240 1680

Detection 
Number

(B) 
224 223 209 209 221 178 192 1456

Detection 
Rate

(B/A)*100
93.33% 92.92% 87.08% 87.08% 92.08% 74.17% 80.00% 86.67%

(Table 2) Result of Dynamic Analysis

As shown in Table 2, The Accuracy of the Dynamic 

Analysis is enough high to detect the malicious in the 

obfuca. The Process cost of the Dynamic Analysis is 

expensive, but The Role of Dynamic Analysis is very 
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necessary for detecting the embedded malicious and updating 

the signature of the static analysis from the detection result.

3.4 Signature Update

If a malicious script is detected by the dynamic analysis, 

a signature for static analysis can be generated using the 

detected data. The detected malicious script and the domain 

data are integrated and grouped with the existing malicious 

script data to extract the token corresponding to the      

conjunction pattern. It is then created as the signature of the 

YARA rule set that stores it. Figure 8 shows the detailed 

work flow of a signature update. 

(Figure 8) Process of Signature Update

Using the updated signature, static analysis can quickly 

detect the same attacks. Learning through detection of 

transformed/obfuscated malicious script is the key function of 

the Analysis Engine.

3.5 Post-Process

The purpose of this job is to remove the malicious code 

using the script code and domain data resulting from the 

earlier static and dynamic analyses without interfering with 

the execution of safe scripts. It provides two methods. The 

first method is to switch the key API generating the 

malicious behavior with the script code in the malicious 

domain of the original script code with an API without any 

functionality. For example, the part that calls the “send” 

function -- which is the key API generating the traffic in the 

XHR Dos attack script -- may be switched with a 

meaningless function called “sanitizing”. That way, the 

traffic attack can be blocked without changing the script 

code. The second method involves redirecting to a blocking 

page when the HTML page has a malicious script. Since it 

also blocks script functions that are not malicious, it is used 

for cases wherein code removal or detection is difficult.

(Figure 9) Post-Process

4. Conclusion

Fore real-time processing, it is important to minimize the 

time needed for JavaScript interpretation and to update the 

signature continuously to improve processing speed and 

analysis accuracy. As such, the Analysis Engine consists of 

static analysis, which quickly detects the malicious script that 

uses the signatures, and behavior-based dynamic analysis that 

updates the signatures. Static analysis matches the pattern of 

the token stored in the signature with the unprocessed script 

code to process the script quickly, whereas dynamic analysis 

analyzes the behavior using the API flow to detect the 

transformed or obfuscated malicious script. The result of 

detection by dynamic analysis is reflected on the generated 

signature, and the signature aids in the quick detection of the 

repeated attack; thus enabling real-time processing. 

Table 3 shows the result of  accessing 6 major domestic 

sites with clients and processing 1Gbps of the HTTP traffic.

Quantitative 
Performance Index

Significance

Web Access 
Delay Time:

2.658 sec.

Real-time processing was proven to 
be suitable since the delay time was 
kept to less than 3 seconds so as not 
to affect user-friendliness.

Detection Rate:
89.06%

The performance level was proven to 
be at the commercial level since 1995 
out of 2240 test samples were 
detected (non-obfuscated code: 539 
/obfuscated code: 1456). 

(Table 3) Result of the Analysis Engine
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The direction for future studies is to develop functions to 

detect totally new malicious scripts using the call trace 

signature, which is an important detection element of the 

dynamic analysis, and to advance the technology to cope 

with the vulnerabilities of HTML5 better. Moreover, the 

signature distribution and management function will be 

improved further for commercialization.
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