
Journal of Internet Computing and Services(JICS) 2015. Aug.: 16(4): 51-59 51

실시간으로 악성 스크립트를 탐지하는 기술☆

The Real-Time Detection of the Malicious JavaScript

추 현 록1 정 종 훈1 김 환 국1**

Hyun-Lock Choo Jong-Hun Jung Hwan-Kuk Kim

요 약

자바 스크립트는 정적인 HTML 문서에 동적인 기능을 제공하기 위해 자주 사용되는 언어이며, 최근에 HTML5 표준이 발표됨으로써

더욱더 관심 받고 있다. 이렇게 자바 스크립트의 중요도가 커짐에 따라, 자바 스크립트를 사용하는 공격(DDos 공격, 개인 정보 유출

등)이 더욱 더 위협적으로 다가오고 있다. 이 악성 자바 스크립트는 흔적을 남기지 않기 때문에, 자바 스크립트 코드만으로 악성
유무를 판단해야 하며, 실제 악성 행위가 브라우저에서 자바 스크립트가 실행될 때 발생되기 때문에, 실시간으로 그 행위를 분석해야

만 한다. 이러한 이유로 본 논문은 위 요구사항을 만족하는 분석 엔진을 소개하려 한다. 이 분석 엔진은 시그니쳐 기반의 정적 분석

으로 스크립트 코드의 악성을 탐지하고, 행위 기반의 동적 분석으로 스크립트의 행위를 분석하여 악성을 판별하는 실시간 분석 기술
이다.

☞ 주제어 : 악성 자바 스크립트, 분석 엔진, 정적 분석, 동적 분석, 스크립트 기반 사이버 공격

ABSTRACT

JavaScript is a popular technique for activating static HTML. JavaScript has drawn more attention following the introduction of HTML5

Standard. In proportion to JavaScript’s growing importance, attacks (ex. DDos, Information leak using its function) become more

dangerous. Since these attacks do not create a trail, whether the JavaScript code is malicious or not must be decided. The real attack

action is completed while the browser runs the JavaScript code. For these reasons, there is a need for a real-time classification and

determination technique for malicious JavaScript. This paper proposes the Analysis Engine for detecting malicious JavaScript by

adopting the requirements above. The analysis engine performs static analysis using signature-based detection and dynamic analysis

using behavior-based detection. Static analysis can detect malicious JavaScript code, whereas dynamic analysis can detect the action

of the JavaScript code.

☞ Keywords: Malicious JavaScript, Analysis Engine, Static Analysis, Dynamic Analysis, Script-Based Cyber Attack

1. Introduction

Existing web attacks are mostly of the drive-by-download

type. This type of attack induces users to install the malware

and execute the attack using the malware. Note, however,

that a script-based cyber-attack is different because it can

execute an attack only with a user accessing a particular page

1 Korea Internet & Security Agency, Seoul, 138-950, Korea
* Corresponding author (rinyfeel@kisa.or.kr)
[Received 15 April 2015, Reviewed 22 April 2015, Accepted 11
June 2015]
☆ This work was supported by the ICT R&D Program of

MSIP/IITP. [14-912-06-002, The Development of Script-based
Cyber Attack Protection Technology]

☆ A preliminary version of this paper was presented at ICONI
2014 and was selected as an outstanding paper.

with a browser. The reason such attack is dangerous can be

briefly described as follows:

A script-based attack is not generated by an executable

file such as malware. Since the attack is executed with

the running of a script by a browser, it can easily bypass

the existing intrusion detection system (IDS) and

intrusion prevention system (IPS), which are used to

detect the malware.

An obfuscation method is a technology that is often used

to protect the source in JavaScript; it is used by most

script-based attacks to bypass the code detecting systems.

In HTML5, JavaScript supports so many functions that

it can replace ActiveX. They include not only audio,

video, and other media management functions but also

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2015.16.4.51

The Technology that detects the Malicious JavaScript in Real-time

52 2015. 8

access to the local storage of the browser. An attack is

very likely to use these functions.

This paper introduces the Analysis Engine for detecting

malicious scripts in real time. The Analysis Engine consists

of signature-based static analysis and behavior-based

dynamic analysis. A signature is an object that expresses the

unique pattern data defining a known malicious script. Static

analysis checks if the pattern is found in a script code. Note,

however, that static analysis cannot find the patterns in the

variants of malicious script or obfuscated script since the

code patterns are altered. So Dynamic analysis is performed

to supplement it. Dynamic analysis tracks the API flow

through the JavaScript engine in order to analyze the

behavior of the JavaScript code. Since the behavior

generated by a malicious script is completed by a native

function[1] that can access the system, the syntax may be

changed by code obfuscation or polymorphism, but not the

API flow that determines the behavior[1][2].

(Figure 1) Risk of Script-Based Cyber Attack

The rest of this paper is organized as follows: Chapter 2

discusses related research; In Chapter 3, we present the

system architecture and flow and describe more details of

each analysis method; Finally, the conclusion and future

study direction are presented in Chapter 4.

2. Related Research

There are several ways to analyze the data flow to detect

malicious scripts. Well-known FLAX[3] creates JASIL

(JAvascript Simplified Instruction Language) using the

JavaScript engine just like the Analysis Engine. JASIL is the

simplest expression of data and execution defined by

JavaScript standard[4]. FLAX finds the critical sinks

accessing the data such as user privilege, code generation,

and cookie and input the randomly generated data using the

black box fussing method and executes the sinks to detect

potential risk factors. Staging framework[5] creates the stage

containing the policy to restrict data flow and DOM access.

When a hole (external JavaScript loaded through the

network) accesses the stage while interpreting the JavaScript

code, the stage's internal restricting policy is changed

according to the hole. A script is judged to be malicious if

it violates the internal policy. Other methods[6] of detecting

the malicious script include the method using the abstract

syntax tree (AST) and control flow graph (CFG). The script

code is interpreted to create an AST at first, and the main

body of each function in AST is organized to CFG. CFGs

are executed through symbolic execution, with the result

summarized and stored in the function summary. The

summaries are analyzed to detect malicious scripts. Note,

however, that this technology works only with PHP.

Although the detection methods described above can

effectively find the latent malicious scripts in batch

processing, they are not suitable for real-time processing

because these require a long time and a lot of resources for

the analysis in many execution paths. There are rule

set-based detection methods such as IDS developed for

real-time processing, but they have limitations since they

cannot detect new attack types[7].

This paper proposes an Analysis Engine that supplements

the aforesaid weaknesses and consolidates the strengths.

3. Proposed Technology

The Analysis Engine seeks to detect as many malicious

scripts as possible through fast static analysis and find other

variants of or obfuscated malicious scripts through dynamic

analysis. Since the static analysis checks if a malicious

pattern exists in the inputted JavaScript code, it can be

quickly processed without additional code processing.

Dynamic analysis tracks the flow of API created when the

script is executed in the JavaScript engine to define the

behavior and checks if the behavior is similar to that of a

known malicious script. The malicious script data detected

by the dynamic analysis is used for creating the signature

used by the static analysis.

The Technology that detects the Malicious JavaScript in Real-time

한국 인터넷 정보학회 (16권4호) 53

Such updating of the signature for static analysis

minimizes opportunities for dynamic analysis; thus

shortening the average delay time of malicious script

analysis and eventually enabling real-time processing.

(Figure 2) Analysis Engine Architecture

3.1 Applied Technology

Before going into the details of the Analysis Engine, the

applied technologies will be described to aid in

understanding of the operation of the Analysis Engine.

3.1.1 Conjunction Pattern

Candidate string tokens are extracted from input

documents and prioritized based on how many times the

tokens were used by all documents. The conjunction pattern

[8] is a group of tokens refined and restructured based on the

priority. In other words, it consists of the most used tokens

in all input documents.

3.1.2 YARA

YARA[9] is used to detect or categorize the malware. The

biggest strength of the technology is that it can include many

data expressions in the detection rule. For example, usual

text string, Hex character string, and regular expression can

be included. It can also be applied in diverse environments

since the control condition of the expressions can also be

included in the rule set. And the speed was significantly

increased in version 2.0 or later.

The Yara rule set containing the conjunction patterns of

the malicious script is called “signature” in this paper.

(Figure 3) Process of Signature Creation

3.1.3 JavaScript Engine

The JavaScript engine analyzes the syntax of a script and

executes the script in accordance with ECMA-262[4] as the

JavaScript standard such as Chakra of IE or V8 of Chrome.

When a script code is analyzed for syntax or executed in a

JavaScript engine, users can check the caller/callee name and

input data through API hooking. These data enable tracking

of behavior of the script. Since ECMA-262 does not define

the functions related to DOM (Document Object Model)

[10], DOM APIs should be additionally ported so that the

browser behavior is accurately understood.

The script execution data created in the JavaScript engine

is called "call trace" in this paper; the call trace of the

malicious script used for malicious detection is called "call

trace signature."

3.1.4 SimHash

SimHash is a similarity analysis algorithm using LSH

(Locality Sensitive Hash). Unlike the general function used

in mathematics, LSH[19] maximizes the collision probability.

In other words, it generates similar result for similar items.

The input data is transformed into a fingerprint arranged in

byte array of a specific length regardless of size by LSH.

The similarity distance[11] is measured between the created

fingerprints using the Hamming distance[12].

SimHash is used to compare the similarity of call trace

signature and call trace through the dynamic analysis of the

script behavior.

3.2 Static Analysis

Static analysis is mainly divided into two parts: signature

check, which detects the malicious scripts using the pattern

data of signatures, and; malicious risk scanning, which

The Technology that detects the Malicious JavaScript in Real-time

54 2015. 8

determines the additional risk for the dynamic analysis. If the

signature check fails, malicious risk scanning is performed;

the input script is considered safe if the score of the

malicious risk is below the threshold. Figure 4 shows the

work flow of static analysis.

(Figure 4) Static Analysis Work Flow

3.2.1 Signature Check

A stored signature in the signature storage contains the code

pattern data of an already detected malicious code. If a script

matches the pattern data, the script is very likely to be one of

the malicious script types used for the creation of the signature.

Table 1 below shows the result of the signature inspection.

This matching job is performed by the YARA module.

When a specific pattern is detected, the YARA module

outputs the file location of the detected character string. We

will track the area where the tokens in the signature are most

concentrated; the tracked area data of the malicious code will

be used to remove the malicious code later.

Malicious
Type

XHR
Dos

Hash
Dos

IP
Scan

Port
Scan

Worker
Dos

File
API

Geolo
cation

Total

Total
Number

(A)
80 80 80 80 80 80 80 560

Detection
Number

(B)
80 80 74 74 80 71 80 539

Detection
Rate

(B/A)*100
100% 100% 92.5% 92.5% 100% 88.7% 100% 96.2%

(Table 1) Result of Signature Check

3.2.2 Malicious Risk Scanning

Even if a script passed the signature check, it may still

need to be checked by the dynamic analysis because it is

difficult to detect new types or transformed/obfuscated

malicious scripts with signatures[13]. Malicious risk scanning

measures the risk of input scripts by inspecting the risk

factors described below and decides whether dynamic analysis

is needed by comparing the risk level with the threshold.

HTML5 Tag Check

The existing HTML4 malware detection technology can

be bypassed using the newly created tags or attributes. For

example, XSS (Cross Site Scripting), which was the big issue

in OWASP 2013, is more likely to use new HTML5 tags

such as video and audio[14]. This function checks the use of

such risky new HTML5 tags. A detailed weight factor can

be assigned to each new tag to measure the risk score

according to the flow of attack. The score is calculated as

follows:

 
  













 
 
  

JavaScript API Check

JavaScript API contains many functions that can be

abused by malicious scripts. They include eval,

document.write, and setTimeout[15]. The final behavior of a

malicious script is completed by the system API accessing

the File I/O, DOM, and Network[16]. As such, potential risk

can be detected by inspecting the use of such functions. A

weight factor can be assigned to each JavaScript API

function for more detailed risk analysis. The score is

calculated as follows:


  













 
 
   

Obfuscation Check

The obfuscation technique is frequently used by malicious

scripts to bypass the signature-based detection, and more than

70% of malicious scripts reportedly used the obfuscation

technique[15][17]. It is difficult for signature-based detection

to find such obfuscated script because there are so many

different types, and new obfuscation techniques continue to

be found[13]. As such, static analysis only judges the

possibility of obfuscation; dynamic analysis determines

whether the behavior is malicious.

The Technology that detects the Malicious JavaScript in Real-time

한국 인터넷 정보학회 (16권4호) 55

Source Type Sample Number Detection Number

 Base62/Base64/

 Packed Encode
124 107(86.2%)

 Not Encode 344 58(16.8%)

Obfuscation is judged in three factors. First, entropy[18]

measures the distribution rates of all characters and checks

how evenly they are spread.

 
  






log














   

 
  





Here, B is the set of all bytes, and bℹ is the individual

byte in the whole document. Second, the n-gram entropy rate

calculates the distributions of special characters (punctuation,

symbol, etc.) and measures their ratios to the total entropy.

 


, S={ 0x21-0x2f, 0x3A-0x40,

0x5b-0x5f, 0x7b-0x7e }

The characters included in S are the special characters

including any of “!“#$%&‘{}*+,-./:;<=>?@[\]^_`{|}~”. This

factor represents the relative distribution of special characters

that are frequently used in obfuscated statements. The last

factor word size[18] is used to check character strings longer

than a specific size in the script code to suspect them as

obfuscated statements. Each of the three factors above is

assigned a weight factor and a critical value to identify

obfuscation as needed. Table 2 below shows the result of an

obfuscation test.

(Table 2) Result of Obfuscation Check

The obfuscation test above reveals 13.8% false negative

and 16.8% false positive. Therefore, this test is used only to

identify scripts suspected of being obfuscated. TE, TR, and TW

are the critical values of Entropy, N-gram Entropy Rate, and

Word Size, respectively. If a factor exceeds its respective

threshold value, the respective weight factor -- WE, WR, or

WW -- is reflected on the score.

 ≥  ≥  
 ≥ 

Malicious risk scanning has a different weight factor for

each of the above test scores. For example, a higher weight

factor may be assigned to the HTML5 tag check if the threat

of HTML5 attacks increases; obfuscation check may be

assigned a higher weight factor if there is higher occurrence

of obfuscation in the malicious code. The weigh factors help

users flexibly cope with risk factors. The final risk score is

calculated as follows:

  

3.3 Dynamic Analysis

The script suspected to be malicious by the malicious risk

scanning is run in the JavaScript engine to track the API

flow and analyze the behavior. The API flow data are

recorded in the aforementioned call trace, and malicious

scripts are detected by analyzing the similarity with the call

trace signature. Figure 5 shows the detailed work flow of a

dynamic analysis.

(Figure 5) Dynamic Analysis Work Flow

3.3.1 Call Trace Generation

As described above, call trace is the recorded data of API

functions that are sequentially called when the JavaScript

engine analyzes the script syntaxes and are executed. The

API record data include the names of native APIs (JavaScript

API and DOM API) and the parameter data inputted to this

API. The reason only native APIs are recorded is that the

user-defined functions or data inputted to those functions

cannot be used as the criteria for identifying the malicious

behavior because they can be easily altered by users. The

most important reason is that a malicious behavior is

completed by the native API that can access the system; the

The Technology that detects the Malicious JavaScript in Real-time

56 2015. 8

input data determining the direction of malicious behaviors

must eventually be restored to their input data form suitable

for the API when the native API is executed even when the

data were transformed or obfuscated[1][2][15][16]. We also

tracked the location data in the original script code and

recorded it in the call trace so that they can be used for

removing the malicious code and generating the signature in

the future. It uses the interpreter nature of the JavaScript

engine analyzing the syntax in units of character string and

executing it immediately. The engine always saves the

location data of the original code in order to read the next

character string. Figure 6 shows the details of work flow call

trace creation.

(Figure 6) Process of Creating the Call Trace

3.3.1 Call Trace Match

The API flows as shown in Figure 6 because of the

execution logic of the JavaScript code defined in ECMA-262

[4]. Only one JavaScript execution context[4] can be

executed; other contexts are stored in the stack. If there are

multiple script syntaxes, a script code will be on standby

until the preceding script code execution is completed, so the

sequential API flow is created. Therefore, scripts that generate

similar malicious behaviors also have similar API flows. The

call trace match uses it to detect the malicious script.

(Figure 7) Process of Call Trace Match

As shown in Figure 7 above, a call trace has the

beginning ① and end ② function of an API flow. They

generally correspond to the beginning and end of a behavior.

The call trace match checks if there is a section that ends

with ① and ② in a call trace containing the execution data

of script codes, extracts the section into a sub tree, and

compares it with the call trace signature. The reason for the

process is the nature of SimHash wherein the result similarity

analysis is more accurate when the sizes of the compared

data are similar[11].

   

′

The similarity between a sub tree and a call trace

signature is checked by the formula above. Here, b means

the bit length of h,h’ as the fingerprint created by SimHash.

The number of bits -- whose XOR (Exclusive OR) is 1 --

between arrays of bits of fingerprints is then obtained. It

becomes the Hamming distance [12]. If the final similarity is

above the threshold value, we judge the script that created

the sub tree to be a variant of a malicious script used for

creating the call trace signature. If not, we judge the script

to be in safe status. If a script is judged to be malicious, the

we collect the location data of the malicious part from the

call trace and creates the domain data of the malicious script

code. The domain data will be used to generate the signature

and remove the malicious code.

Malicious
Type

(Obfuscation)

XHR
Dos

Hash
Dos

IP
Scan

Port
Scan

Worker
Dos

File
API

Geolo
cation

Total

 Total
Number

(A)
240 240 240 240 240 240 240 1680

Detection
Number

(B)
224 223 209 209 221 178 192 1456

Detection
Rate

(B/A)*100
93.33% 92.92% 87.08% 87.08% 92.08% 74.17% 80.00% 86.67%

(Table 2) Result of Dynamic Analysis

As shown in Table 2, The Accuracy of the Dynamic

Analysis is enough high to detect the malicious in the

obfuca. The Process cost of the Dynamic Analysis is

expensive, but The Role of Dynamic Analysis is very

The Technology that detects the Malicious JavaScript in Real-time

한국 인터넷 정보학회 (16권4호) 57

necessary for detecting the embedded malicious and updating

the signature of the static analysis from the detection result.

3.4 Signature Update

If a malicious script is detected by the dynamic analysis,

a signature for static analysis can be generated using the

detected data. The detected malicious script and the domain

data are integrated and grouped with the existing malicious

script data to extract the token corresponding to the

conjunction pattern. It is then created as the signature of the

YARA rule set that stores it. Figure 8 shows the detailed

work flow of a signature update.

(Figure 8) Process of Signature Update

Using the updated signature, static analysis can quickly

detect the same attacks. Learning through detection of

transformed/obfuscated malicious script is the key function of

the Analysis Engine.

3.5 Post-Process

The purpose of this job is to remove the malicious code

using the script code and domain data resulting from the

earlier static and dynamic analyses without interfering with

the execution of safe scripts. It provides two methods. The

first method is to switch the key API generating the

malicious behavior with the script code in the malicious

domain of the original script code with an API without any

functionality. For example, the part that calls the “send”

function -- which is the key API generating the traffic in the

XHR Dos attack script -- may be switched with a

meaningless function called “sanitizing”. That way, the

traffic attack can be blocked without changing the script

code. The second method involves redirecting to a blocking

page when the HTML page has a malicious script. Since it

also blocks script functions that are not malicious, it is used

for cases wherein code removal or detection is difficult.

(Figure 9) Post-Process

4. Conclusion

Fore real-time processing, it is important to minimize the

time needed for JavaScript interpretation and to update the

signature continuously to improve processing speed and

analysis accuracy. As such, the Analysis Engine consists of

static analysis, which quickly detects the malicious script that

uses the signatures, and behavior-based dynamic analysis that

updates the signatures. Static analysis matches the pattern of

the token stored in the signature with the unprocessed script

code to process the script quickly, whereas dynamic analysis

analyzes the behavior using the API flow to detect the

transformed or obfuscated malicious script. The result of

detection by dynamic analysis is reflected on the generated

signature, and the signature aids in the quick detection of the

repeated attack; thus enabling real-time processing.

Table 3 shows the result of accessing 6 major domestic

sites with clients and processing 1Gbps of the HTTP traffic.

Quantitative
Performance Index

Significance

Web Access
Delay Time:

2.658 sec.

Real-time processing was proven to
be suitable since the delay time was
kept to less than 3 seconds so as not
to affect user-friendliness.

Detection Rate:
89.06%

The performance level was proven to
be at the commercial level since 1995
out of 2240 test samples were
detected (non-obfuscated code: 539
/obfuscated code: 1456).

(Table 3) Result of the Analysis Engine

The Technology that detects the Malicious JavaScript in Real-time

58 2015. 8

The direction for future studies is to develop functions to

detect totally new malicious scripts using the call trace

signature, which is an important detection element of the

dynamic analysis, and to advance the technology to cope

with the vulnerabilities of HTML5 better. Moreover, the

signature distribution and management function will be

improved further for commercialization.

Reference

[1] Lu, Gen, and Saumya Debray. "Automatic simplification

of obfuscated JavaScript code: A semantics-based approach."

Software Security and Reliability (SERE), 2012 IEEE

Sixth International Conference on. IEEE, 2012,

http://www.cs.arizona.edu/~genlu/pub/js-deobf-web.pdf.

[2] Lee, Jusuk, Kyoochang Jeong, and Heejo Lee. "Detecting

metamorphic malwares using code graphs." Proceedings

of the 2010 ACM symposium on applied computing.

ACM, 2010,

http://ccs.korea.ac.kr/pds/SAC10.pdf

[3] Saxena, Prateek, et al. "FLAX: Systematic Discovery of

Client-side Validation Vulnerabilities in Rich Web

Applications." NDSS. 2010,

http://www.andrew.cmu.edu/

user/ppoosank/papers/FLAX.pdf

[4] ECMA-262 “EMCAScript Langauge Specification”,

http://www.ecma-international.org/publications/standards

/Ecma-262.htm

[5] Chugh, Ravi, et al. "Staged information flow for JavaScript."

ACM Sigplan Notices. Vol. 44. No. 6. ACM, 2009,

http://cseweb.ucsd.edu/~lerner/papers/pldi09-sif.pdf

[6] Xie, Yichen, and Alex Aiken. "Static Detection of

Security Vulnerabilities in Scripting Languages."

USENIX Security. Vol. 6. 2006,

https://www.usenix.org/

legacy/event/sec06/tech/full_papers/xie/xie_html/

[7] Chowdhary, Mahak, Shrutika Suri, and Mansi Bhutani.

"Comparative Study of Intrusion Detection System." (2014),

http://www.ijcseonline.org/pub_paper/IJCSE-00229.pdf

[8] Newsome, James, Brad Karp, and Dawn Song. "Polygraph:

Automatically generating signatures for polymorphic

worms." Security and Privacy, 2005 IEEE Symposium

on. IEEE, 2005,

https://cse.sc.edu//~huangct/CSCE715F10/715presentatio

n10.pdf

 [9] YARA Documentation,

http://yara.readthedocs.org/en/latest/index.html

[10] Document Object Model, http://www.w3.org/DOM/

[11] Charikar, Moses S. "Similarity estimation techniques from

rounding algorithms." Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing. ACM,

2002,

http://www.cs.princeton.edu

/courses/archive/spring04/cos598B/bib/CharikarEstim.pdf

[12] Hamming, Richard W. "Error detecting and error

correcting codes." Bell System technical journal 29.2

(1950): 147-160,

http://www.lee.eng.uerj.br/~gil/redesII/hamming.pdf

[13] Linn, Cullen, and Saumya Debray. "Obfuscation of

executable code to improve resistance to static

disassembly." Proceedings of the 10th ACM conference

on Computer and communications security. ACM, 2003,

https://www.cs.arizona.edu/solar/papers/CCS2003.pdf

[14] Dong, Guowei, et al. "Detecting cross site scripting

vulnerabilities introduced by HTML5." Computer Science

and Software Engineering (JCSSE), 2014 11th International

Joint Conference on. IEEE, 2014,

[15] Xu, Wei, Fangfang Zhang, and Sencun Zhu. "JStill:

Mostly static detection of obfuscated malicious javascript

code." Proceedings of the third ACM conference on Data

and application security and privacy. ACM, 2013,

http://www.cse.psu.edu/~sxz16/papers/JStill.pdf

[16] Fan, Wenqing, Xue Lei, and Jing An. "Obfuscated

Malicious Code Detection with Path Condition Analysis."

Journal of Networks 9.5 (2014): 1208-1214,

http://ojs.academypublisher.com/index.php/jnw/article/vi

ewFile/jnw090512081214/9256

[17] Xu, Wei, Fangfang Zhang, and Sencun Zhu. "The power

of obfuscation techniques in malicious JavaScript code:

A measurement study." Malicious and Unwanted

Software (MALWARE), 2012 7th International

Conference on. IEEE, 2012,

http://www.cse.psu.edu/~sxz16/papers/malware.pdf

[18] Choi, YoungHan, et al. "Automatic detection for

javascript obfuscation attacks in web pages through string

pattern analysis." Future Generation Information

The Technology that detects the Malicious JavaScript in Real-time

한국 인터넷 정보학회 (16권4호) 59

◐ 저 자 소 개 ◑

추 현 록 (Hyun-Lock Choo)

2007년 부경대학교 컴퓨터멀티미디어공학과(공학사)

2015년 성균관대학교 정보통신대학원 정보보호학과 석사과정
2014～현재 한국인터넷진흥원 선임 연구원
관심분야 : Network/Web Security, Cloud Service, Big Data Analysis, IoT, etc.

E-mail : hlchu@kisa.or.kr

정 종 훈 (Jong-Hun Jung)

2003년 한국해양대학교 제어컴퓨터공학과(공학사)

2010년 성균관대학교 정보통신대학원 정보보호학과(석사)

2013～현재 한국인터넷진흥원 책임 연구원
관심분야 : Cryptography, Data Security&Privacy, Mobile Security, Web Security, Cloud & IoT Security, etc.

E-mail : jjh2640@kisa.or.kr

김 환 국 (Hwan-Kuk Kim)

2000년 한국항공대학교 컴퓨터공학과(공학석사)

2011년 고려대학교 대학원 경정보공학과(공학박사)

2007～현재 한국인터넷진흥원 팀장
관심분야 : Information Security Management, VoIP security. 4G Security, Network Security, etc.

E-mail : rinyfeel@kisa.or.kr

Technology. Springer Berlin Heidelberg,

http://www.sersc.org/journals/IJSIA/vol4_no2_2010/2.pd

f 2009. 160-172

[19] A. Rajaraman and J. Ullman (2010). "Mining of Massive

Datasets, Ch. 3.",

http://www.langtoninfo.com/web_content/978110701535

7_frontmatter.pdf

