
Journal of Internet Computing and Services(JICS) 2015. Feb.: 16(1): 75-82 75

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발☆

A Study on the Link Server Development Using B-Tree Structure in the
Big Data Environment

박 승 범1*
황 종 성2 이 상 원3*

Sungbum Park Jong Sung Hwang Sangwon Lee

요 약

주요 기업들과 포털들은 사용자들에게 웹 기반 환경에서 보다 효율 인 콘텐츠 이용을 지원하기 해 이른바 콘텐츠 리시스템

(CMS, Contents Management Systems)과 콘텐츠의 데이터베이스 내 물리 주소를 연결하여 리하는 링크 서버를 극 으로 도입

하고 있다. 이를 통해 웹 라우 화면에서 보여지는 콘텐츠의 URL과 실제 데이터베이스 안의 콘텐츠의 물리 주소를 자동으로 연
결해 주고, URL이나 데이터베이스의 물리 주소의 변경시 두 주소를 재 연결하는 역할을 수행한다. 최근 빅데이터 환경의 도래에

따라 디지털 콘텐츠와 사용자 속수가 폭발 으로 증가하고 있는 상황에서 CMS와 링크 서버에서 수행해야 하는 유효 링크 검사

횟수도 따라서 증가하고 있다. Peta-Byte 는 Eta-Byte 환경 하에서 수행되는 유효 링크 검사를 기존 URL 기반의 순차 방식으로
수행할 경우 속도 하에 따른 데이터 링크 식별률(identification rate)의 하와 빈번한 링크 검사에 따른 데이터베이스에 부하를 주는

요인으로 작용될 수 있다. 따라서, 본 연구는 상기와 같은 종래의 문제 을 해결하기 해 량의 URL에 해 B-Tree 기반의 정보

식별자의 구간별 개수 분석을 기반으로 URL 삭제 링크 추가 링크를 인식하고 효과 으로 리하는 것이 가능하도록 해주는 링크
서버를 제공하는 데 있다. 본 연구를 통해 기존 방식보다 빠르고 낮은 부하를 주는 데드 링크 체크 처리가 가능해 질 것이다.

☞ 주제어 : 링크서버, B-tree 구조, 빅데이터, 콘텐츠 리 서버

ABSTRACT

Major corporations and portals have implemented a link server that connects Content Management Systems (CMS) to the physical

address of content in a database (DB) to support efficient content use in web-based environments. In particular, a link server

automatically connects the physical address of content in a DB to the content URL shown through a web browser screen, and

re-connects the URL and the physical address when either is modified. In recent years, the number of users of digital content over

the web has increased significantly because of the advent of the Big Data environment, which has also increased the number of link

validity checks that should be performed in a CMS and a link server. If the link validity check is performed through an existing

URL-based sequential method instead of petabyte or even etabyte environments, the identification rate of dead links decreases

because of the degradation of validity check performance; moreover, frequent link checks add a large amount of workload to the

DB. Hence, this study is aimed at providing a link server that can recognize URL link deletion or addition through analysis on the

B-tree-based Information Identifier count per interval based on a large amount of URLs in order to resolve the existing problems. Through

this study, the dead link check that is faster and adds lower loads than the existing method can be performed.

☞ keyword : Link Server, B-Tree, Big Data, Content management Server

1. Introduction

1, 2 Big Data Strategy Center, National Information Society Agency
Seoul 100-775, Korea (parksb@nia.or.kr, jshwang@nia.or.kr)

3 Division of Information and Electronic Commerce, Wonkwang
University Iksan 570-749, Korea

* Corresponding author(sangwonlee@wku.ac.kr)
[Received 17 November 2014, Reviewed 18 November 2014,
Accepted 24 February 2015]
☆ This paper was supported by Wonkwang University in 2014.
☆ A preliminary version of this paper was presented at APIC-IST

2014 and was selected as an outstanding paper.

Major corporations and portals operate link servers in order

to manage digital content effectively in web-based

environments. A link server, which was developed for linked

information, was designed to store mapping information

between content in physical storage devices, such as databases

(DBs), and the URLs linked to the information in such DBs.

In particular, a link server automatically connects the physical

address of content in a DB to the content URL shown through

the web browser screen, and re-connects the URL and the

physical address when either is modified. Such linked

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2015.16.1.75

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

76 2015. 2

(Figure 1) Link server function

(Figure 2) Link server structure

information is stored after being divided into nested and

reference links. Currently, because a Content Management

System (CMS) manages nested and reference links as a block

unit, the DB contains information related to such blocks, as

well.

Link servers are used with CMS because of various

advantages. Links can save the space required for large

amounts of multimedia content. Links can represent many

different versions, in addition to different media formats, for

the same content. Because link servers reduce network traffic

by transmitting only linked information instead of real content,

performance improvement can be achieved. Thus, a link server

can be utilized in many ways.

As such, link servers store and manage link-related

information used for digital content independently. That is,

once new digital content is stored, its related linked information

is stored in a DB.

Then, upon an information request from search servers or

user agents for such linked information, the link server actively

transmits the request results individually by structuring these

results. Because of the recent advent of Big Data environments,

the amount of digital content and user connections have

increased significantly. In such a context, link servers, which

show more efficient storage performance and facilitate rapid

extraction of desired information by storing linked information

in the DB instead of files, should be developed. In addition,

a faster and more efficient check method, compared to the

existing dead link check, is required to maintain consistently

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

한국 인터넷 정보학회 (16권1호) 77

reliable CMS services by checking the validity of links

periodically through the dead link check agent, which can be

smoothly applied even in petabyte or etabyte storage spaces.

This paper is organized as follows. Chapter 2 introduces

previous studies on link servers and dead link management

via link agents. Chapter 3 explains a B-tree-based data link

check agent. Chapter 4 describes a representative case of the

B-tree-based data link check. Finally, Chapter 5 presents the

conclusions of this paper.

2. Related Works: Dead Link

Management through Link

Server and Link Agent

2.1 Link Server Function

The digital content provided in a CMS does not provide

practical content to a document, but consists of formats that

infer or refer to an entire or partial document using a link.

A link server separates, stores, and manages the linked

information of virtual documents.

Fig. 1 shows the relationship between a link server and

a CMS in which the linked information of the web document

pointed by the link server is managed to be valid. A CMS

transmits a request for storing the linked information to a link

server; subsequently, the link server extracts the required linked

information and transmits it to the CMS. In addition, the link

server indicates error details to the CMS when the linked

information is invalid. Because the linked information refers

to a certain portion of documents accessed over the web,

invalid linked information might occur occasionally. A link

server checks the validity of the linked information periodically

and stores the updated information in a DB. A dead link check

agent maintains and checks the validity of the linked

information.

2.2 Structure of Link Server and Dead Link

Check Agent

Linked information stored in a link server is transmitted

from a user agent. That is, a user agent processes newly created

virtual documents and extracts linked information accordingly.

Once a link server is requested to store linked information

extracted by a user agent, a link server accepts the request

and stores the linked information. Once a search server requests

the linked information, the stored information is transmitted

to the search server by extracting the link in a DB via the

link server. The boxes with lines in Fig. 2 are operated through

an interface for the interoperation with an existing CMS. A

link server broadly consists of a link manager, a block manager,

a DB manager, and a data link check agent. The link manager

stores links in a DB by classifying them into nested or reference

links while storing, modifying, or deleting newly created links.

The block manager does not manage individual linked

information, but manages nested and reference links through

block IDs. The DB manager was designed to process all the

DB requirements. The data link check agent confirms the link

validity periodically, records errors once problems are found,

and notifies subsequent executions about the errors. The data

link check agent also actively searches and manages broken

URLs.

2.3 Algorithm Design for Performance

Improvement of Data Link Check

Agent in Big Data Environment

The existing technologies are used frequently to check the

URLs of files located in servers that provide various services

regarding web documents. Such technologies are generally

related to Hypertext Transfer Protocol (HTTP) request

technologies for corresponding URLs.. A URL in a web server,

which needs to be checked, is called through programs that

support the HTTP protocol. Then, the return code is analyzed;

if it is 200, the URL is recognized as a valid URL. Because

the current technologies employ sequential search methods

when searching for corresponding URLs, they require a

substantial amount of time for the search. In addition, while

searching corresponding URLs, a considerable workload is

applied to the DB because an entire set of data is scanned.

These existing URL check methods can be used smoothly

when the number of URLs to be checked is small. However,

if the number of URLs is large, the checking process requires

a substantial amount of time. Moreover, because of firewall

systems in the case of web servers located in external

institutions that monitor network connections from the outside

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

78 2015. 2

and block illegal or too many connections, a normal URL

check cannot be performed often.

In order to resolve the aforementioned problems, this study

is aimed at providing a deadlock check agent that can recognize

URL link deletions or additions through analysis on the

B-tree-based Information Identifier count per interval based on

a large amount of URLs.

The study also intends to provide a deadlock check agent

that can process high speed validity checks through URL

management via a DB that stores Information Identifiers in

an internal network, not an external network, which is a

limitation of the existing HTTP request mode experienced for

a large amount of URLs

3. Data Link Check Agent Based

on B-Tree

This study designs a deadlock check agent that performs

rule-based URL analysis and HTTP communication with a data

link check agent that analyzes and records B-tree-based

Information Identifier count per interval. This agent also

includes a link server that provides the communication

frequency, the URL management rule, and the date of the URL

management rule update requested from the data link check

agent according to the communication frequency set. In

addition, the data link check agent checks the errors of the

URL management rule and deletes/adds URL information to

a CMS according to the set frequency, thereby transmitting

the results to the link server. The link server manages the URL

information. That is, it performs updates and records errors

in the URL management rule and the URL information that

was deleted/added.

A data link check agent is installed in a CMS or a specific

server that can be connected internally to the CMS. That is,

once a communication error occurs with the link server, the

information that was deleted/added (ID) is recorded in a log

and transmitted to the link server. The link server manages

the URL information. In particular, the Domain information

from the URL information is managed uniquely, whereas the

Prefix, ID, and Suffix are managed by regular expression.

The data link check agent performs a rule-based check

analysis on the four parts of the URL, which consists of “URL

= Domain + Prefix + ID + Suffix”. Here, the data link agent

assumes that no change occurred in the web program. That

is, only the ID mapping field in the DB that corresponds to

said ID is checked to replace the entire URL check, whereas

the Information Identifier is defined as a value of the ID

mapping field.

The data link check agent is utilized as a pre-condition of

the Information Identifier when the B-tree-based Information

Identifier count per interval is analyzed with regard to URL

information. The Information Identifier is any arbitrary

character string that has the form of sequential or constantly

increasing or decreasing values, and it is represented by

character or numerical data types, including char, varchar,

string, integer, double, and float. The Information Identifier

can be represented by literal or numeric values that can be

compared, such as “>, =, <”; however, the preference is for

a combination of multiple fields.

The data link check agent analyzes and records the

Information Identifier count per interval using a node that

represents the serial number that follows the B-tree node

navigation; min, which represents the minimum value in an

interval; max, which represents the maximum value in an

interval; count (min..max), which represents the Information

Identifier count between min and max; min (F), which

represents the minimum value of the Information Identifier;

max (L), which represents the maximum value of the

Information Identifier; and min(i) and max(i), which represent

the next node value (one of the min, max, and mid values)

that will be referred over the B-tree node navigation.

The data link check agent recognizes the deleted/added

information through n + 1 queries at maximum when the

information count is 2
n based on the B-tree structure, and

determines whether the information is deleted/added by

comparing the analyzed information of count per interval

recorded initially and count (ID).

Fig. 3 shows the schematic diagram that describes the

deadlock check agent according to one preferred example of

this study, whereas Fig. 4 shows a process flow diagram that

illustrates the operation of the deadlock check agent according

to the preferred example. As expressed in the figures, the

deadlock check agent broadly consists of the data link check

agent (A) and the link server (B) that perform the HTTP

communication by default.

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

한국 인터넷 정보학회 (16권1호) 79

(Figure 3) Deadlock check agent structure

4. Example of B-Tree-Based Data

Link Check

The B-tree-based data link check performs a rule-based

URL analysis and analysis on the B-tree-based Information

Identifier count per interval; then, the B-tree-based data link

check records the analysis results. Subsequently, it checks

errors of the URL management rule in the CMS (C) and

deleted/added URL information according to the set frequency,

thereby transmitting the check results to the link server (B).

First, the URL is divided into four parts as shown below. Here,

the analysis process of the rule-based URL management is

explained as follows:

 (1) Domain is a character string registered in the Internet

domain name server, which cannot be modified; otherwise, the

corresponding sites are closed, integrated, or separated. (2)

Prefix is a character string that appears before ID. This is

created by a web program and helps map the ID and a specific

field (hereafter referred to as the ID mapping field) in a DB.

(3) ID is a character string that identifies information that

corresponds to a value of the ID mapping field and can also

correspond to multiple fields. (4) Suffix is a character string

that appears after ID. This is created by a web program and

has no relationship to the ID mapping field.

For example, in the URL www.knowledge.go.kr/Serarch

SF1/search_view.jsp?mdno=15426388, Domain is www.knowledge.

go.kr, Prefix is “/SearchSF1/search_view.jsp?mdno=”, ID is

“15426388”, and there is no Suffix.

Checks through the analysis of the four URL parts can be

replaced by the checks described below if the condition where

the corresponding URL is neither redirected nor forwarded is

satisfied. (1) In the case where only the ID modification is

found, only the ID mapping field is checked. (2) In the case

of Prefix modification (including ID modification), which is

a case where another web program is used or the parameter

(the character string that is within the Prefix and is delivered

to a program) must be checked for ID mapping in a DB, it

is essential to check the ID mapping field in consideration

of such a case so that this modification can be transmitted

to the link server (B), thereby updating the required items.

(3) In the case of Suffix modification (including ID

modification), which refers to the case where the same web

program is used, only the ID mapping field is checked. As

explained above, the rule-based URL management check in

this study checks only the ID mapping field that corresponds

to the ID if a modification is not made to the web program,

which removes the necessity for an entire URL check. The

Information Identifier is the ID mapping field value.

URL = Domain + Prefix + ID + Suffix

Moreover, the analysis procedure for the B-tree-based

Information Identifier count per interval can be described as

follows. First, the pre-condition of the Information Identifier

for analysis of the B-tree-based Information Identifier count

per interval is as follows: (1) The Information Identifier is any

arbitrary character string that has the form of sequential or

constantly increasing or decreasing values. (2) The Information

Identifier is represented as character or numerical data types,

including char, varchar, string, integer, double, and float. (3)

The Information Identifier can be represented by literal or

numeric values that can be compared, such as “>, =, <”. (4)

The Information Identifier can be a combination of multiple

fields.

In the analysis and recording method of the Information

Identifier count per interval, a node represents the serial number

that follows a B-tree node navigation, whereas min represents

the minimum value in an interval and max represents the

maximum value in an interval. In addition, count (min..max)

represents a median value calculated by dividing count by two

and rounded, whereas min (F) represents the minimum value

of the Information Identifier and max (L) represents the

maximum value of the Information Identifier. Further, min(i)

and max(i) represent the next node value (one of min, max,

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

80 2015. 2

(Figure 4) Deadlock check agent procedure

(Table 1) Information identification notation

node min max count mid

1 min(F) max(L) count(min..max) mid(min..max)

… Subsequent operations follow the B-Tree Node Navigation algorithm.

n min(i) max(i) count(min..max) mid(min..max)

and mid values) that will be referred over the B-tree node

navigation. Table 1 lists the analysis and recording method

of the Information Identifier count per interval. records.

Because the SQL statement is a general one, it can be

performed periodically without affecting existing service

operations.

A data link check agent (A) performs the aforementioned

rule-based URL analysis and the analysis on the information

identifier count per interval based on the B-Tree algorithm

followed by recording. This data link check agent (A) is

installed in the CMS (C) that provides the URL information,

or in a specific server that can be connected internally with

the CMS (C). When the data link check agent (A) encounters

errors communicating with the link server (B), it records a

log concerning the deleted/added information (ID) and

retransmits the update to the link server (B). The link server

(B) performs an HTTP communication with the data link check

agent (A) and provides the communication frequency, the URL

management rule, and the date of the URL management rule

update requested from the data link check agent (A).

In addition, the link server (B) manages the URL

information. That is, it performs updates and records the errors

in the URL management rule and the deleted/added URL

information. As mentioned above, the link server (B) manages

the URL information; in particular, the Domain information

from the URL information is managed uniquely, whereas the

Prefix, ID, and Suffix are managed by regular expression.

Therefore, this study provides an effective URL check

method using a DB installed in an internal network, not in

an external network, to store the Information Identifiers of a

large amount of URLs. Such external storage is considered

a vulnerability of the existing HTTP request method. This way,

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

한국 인터넷 정보학회 (16권1호) 81

accurate management and maintenance over internal and

external URLs of CMS (C), as well as rapid checks over a

large amount URLs, is provided. Moreover, the scope of this

study is limited to URLs generated by web programming

languages such as JSP, ASP, PHP, and CGI Script.

5. Conclusions

In recent years, the amount of digital content and the

number of users that connect over the web to use such digital

content have increased significantly because of the advent of

Big Data environments; such increase leads to a growth in

the number of link validity checks that should be performed

in CMS and link servers. This study aimed to provide a link

server that can recognize URL link deletion/addition through

the analysis of the B-tree-based Information Identifier count

per interval based on a large amount of URLs in order to

resolve the aforementioned problems. Through this study, a

dead link check that is faster and applies lower loads than

existing methods was achieved. In order to explain the main

idea of this study, some representative cases were described

in this study. However, this study is not limited to such

examples, and without departing from the spirit of the technical

concept, various modifications, additions, and substitutions are

possible. Therefore, the examples disclosed in this study do

not aim to limit the technical concept of this study, but to

explain it more clearly. Accordingly, the technical scope of

this study cannot be limited to such examples. In order to

understand the infrastructure of B-tree structure in the

environment of Big Data, we should research on performance

of Link Information Management Servers. And, further studies

on B-Tree-Based Data Link Check should be performed.

Performance evaluation of deadlock check agent structure

would be certainly helpful.

Reference

[1] R. Ramakrishnan and J. Gehrke, "Database Management

Systems," McGraw-Hill, 2014. doi:10.1109/2.869369

[2] T. Connolly and C. Begg, "Database Systems: A Practical

Approach to Design, Implementation, and Management,"

Addison-Wesley, 2014. doi:10.1287/isre.6.2.118

[3] C. J. Date, "An Introduction to Database Systems,"

Addison-Wesley, 2013.

[4] C. S. Jensen, D. Lin and B. C. Ooi, "Query and update

efficient B+-tree based indexing of moving objects,"

VLDB '04 Proceedings of the Thirtieth International

Conference, Vol. 30, pp. 768-779, 2004.

doi:10.1145/342009.335427

[5] H. Berliner, "The B* Tree Search Algorithm: A Best-First

Proof Procedure," Artificial Intelligence, Vol. 12, Iss. 1,

pp. 23-40, 1979. doi:10.1016/0004-3702(79)90003-1

[6] R. Bayer, "The universal B-tree for multidimensional

indexing: General concepts," Worldwide Computing and

Its Applications (Lecture Notes in Computer Science),

Vol. 1274, pp. 198-209, 1997.

doi: 10.1007/3-540-63343-X_48

[7] S Wu, D Jiang, B. C. Ooi and K. L. Wu, "Efficient b-tree

based indexing for cloud data processing," Vol. 3, Iss.

1-2, pp. 1207-1218, 2010.

Doi:10.14778/1920841.1920991

[8] K Kousha and M Thelwall,"Google Scholar Citations and

Google Web/URL Citations: A Multi-Discipline Exploratory

Analysis," Journal of the American Society for Information

Science and Technology, Vol. 58, Iss. 7, pp 1055?1065,

2007. doi:10.1002/asi.v58:7

[9] V. Mayer-Schonberger K. Cukie, "Big Data: A Revolution

that Will Transform how We Live, Work, and Think,"

Houghton Mifflin Harcourt, 2014.

doi: 10.2501/IJA-33-1-181-183

[10] H. Chen, R. H. L. Chiang and V. C. Storey, Business

Intelligence and Analytics: From Big Data to Big Impact,"

MIS Quarterly, Vol. 36, No.4, pp. 1165-1188, 2012.

http://dl.acm.org/citation.cfm?id=2481683

[11] J. Bughin, M. Chui and J. Manyika, "Clouds, Big Data,

and Smart Assets: Ten Tech-Enabled Business Trends to

Watch," McKinsey Quarterly, Vol. August, 2010.

http://www.mckinsey.com/insights/high_tech_telecoms_i

nternet/clouds_big_data_and_smart_assets_ten_tech-enab

led_business_trends_to_watch

[12] E Turban, L. Volonino and G. R. Wood, "Information

Technology for Management: Advancing Sustainable,

Profitable Business Growth," Wiley, 2014.

http://as.wiley.com/WileyCDA/WileyTitle/productCd-E

HEP002524.html

빅데이터 환경에서의 B-tree 구조 기반 링크정보 리서버의 개발

82 2015. 2

◐ 자 소 개 ◑

박 승 범 (Sung Bum Park)

received his MS degree in management information and his PhD degree in management science from

the Korea Advanced Institute of Science and Technology, Daejeon, Rep. of Korea, in 2002 and 2011,

respectively. Since 2002, he has been working as an executive principal researcher for the National

Information Society Agency, Seoul, Rep. of Korea. His current research interests include new media,

performance evaluation of information systems and digital content distribution.

황 종 성 (Jongsung Hwang)

is the Head of Gov 3.0 center of National Information Society Agency and a member of presidential

Gov 3.0 committee in Republic of Korea. He has worked for IT policy development and project

management for the Korean government since he joined NIA in 1995. His experiences includes

e-government, smart city, and geospatial information infrastructure. In particular, he served as a CIO,

assistant mayor, of Seoul metropolitan government during 2011 to 2013, launching open Gov 2.0

initiatives of Seoul. He has received his master (1987) and doctoral degree (1994) in political science

from Yonsei University in Seoul.

이 상 원 (Sangwon Lee)

received his PhD degree in management engineering from the Korea Advanced Institute of Science and

Technology, Seoul, Rep. of Korea, in 2002 and 2009, respectively. From January of 1995 to January of

2000, he worked for Daewoo Information Systems, Co., Ltd., Seoul, Rep. of Korea. From March of

2010 to February of 2011, he worked as a research professor for Ewha Womans University. Since

March of 2011, he has been an assistant professor with the Department of Information and Electronic

Commerce, Wonkwang University, Iksan, Rep. of Korea. His research interests are data design and data

analysis.

[13] E. Turban, J. E. Aronson and T. P. Liang, "Decision

Support Systems and Intelligent Systems," Prentice Hall,

2014. doi:10.2307/249703

[14] L. C. Zhong and J. M. Rabaey, "An Integrated Data-Link

Energy Model for Wireless Sensor Networks," 2004 IEEE

International Conference on Communications, Vol. 7, pp.

3777-3783, 2004. Available at your request.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=13

13260&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpl

s%2Fabs_all.jsp%3Farnumber%3D1313260

